\¢
) 4

User’'s Manual
Ver. 2.74

03/17/2021

ETE

AL

jFay

ni5.sidelinesoft.com aAvrs

EY NL5DLL User’s Manual

VERSION

This version of User’s Manual is current for NL5 DLL ver. 2.74 (03/17/2021).
The latest version of User’s Manual can be found at nl5.sidelinesoft.com.

LIMITED LIABILITY

NL5 DLL, together will all accompanying materials, is provided on a “as is” basis, without
warranty of any kind. The author makes no warranty, either expressed, implied, or stationary,
including but not limited to any implied warranties of merchantability or fitness for any purpose.
In no event will the author be liable to anyone for direct, incidental or consequential damages or
losses arising from use or inability to use NL5 DLL.

COPYRIGHTS

© 2021, A.Smirnov, Sidelinesoft LLC. The software and User’s Manual are copyrighted. No
portion of this Manual can be translated or reproduced for commercial purpose without the
express written permission from the copyright holder.

Microsoft, Windows, and Microsoft Visual C++ are registered trademarks of Microsoft Corporation. MATLAB is a
registered trademark of The MathWorks, Inc. PYTHON is a registered trademark of the Python Software Foundation.
Borland C++ Builder is a registered trademark of Borland Corporation. Verilog is a registered trademark of Cadence
Design Systems. Xilinx and Vivado are registered trademarks of Xilinx.

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

Table of Contents

I) ¥ oo [UTe3 1 T o PR 4
WVNAE IS NS DL ..ttt et e ettt e bt e e s b e e e s b e e e s bt e e sabaeesabesssabesssbbesssbeeesbeneans 5

RV 4= 6] [0] USRI 5
] (=R 5
o= - 6
L T T 0 I R STSR 7
(L1 o1 0 S 8
FUNCLION PAFAMETEISeviiteitieieieiete ettt sttt e st e e e et e beebeeseeseene e st esteseesbesbenseeneens 8
O o (o] T = | A 8

[210 |1 9
(0 o 1 SO 10
ETOT MESSAGE. ...ttt e et n e n e nn e 10

[Y T o) {0 g 0= 1o o T 10
R0 0 1=T 1 L[11
T o [(=] T PRSP 12

L =0T 14
(@70 TSy 4[] =10 P 15
INPUES/OULPULS ...t bbbttt bt bbbt et e b et st e et bt 16
] 4101 Lo o S 17

] (a1 E= Lo 1o o v 21
USING DLL WIth MATLAB ..ottt te e te e be e sreesteenee e 24
USING DLL With SYStEMVEITIOQcveiiiiiiiiiiieieeie sttt 26
1 =TT 26
USING DL ..ottt b e bbbttt b ettt e b bbbt e s 26
USING DLL With C-COA@ “WIAPPET™viviiiiiiitiieiiitesteeeie sttt 27
Running co-simulation demo with XilinX VIVAd0cccviiiiiiiiicsesesee e 28
(O Lo o (=T oI o] 0] [=Yod SRS 28
Creating [Brary FHE.......o ettt 32
Configuring and rUNNING DEIMOc.eciiiiiieee ettt ste e reeste e e e sreeenas 33

[1< 0 0T 1 (U | 38
I] I I 1 T o] 39
IR € il o B PO 40

A TR T € o B 41

I DR €l T =Y o OO 42
R @ T o OO 43

A R T O 44
R S F= 2SO 45
RS T= =Y N OO 46

A R T € = B T 47
NLD5 S@EV AU ittt 48
NLD5 GEETERT ittt bbb bbb bbb bbb 49

EY NL5DLL User’s Manual

NLS5 S@ETEXE tiiiiiiiiiiiiiiii i bbb bbb 50
DR o e o= (TP 51
NL5 GetParamValUe it 52
NL5 SetParamValle it 53
NL5 GetParamText .t bbb s o4
NL5 SetParamTeXE ciiiiiiiiiiiiii i bbb 55
IR 1 w1 o= Y o R 56
I RS R X L A ar= Y U S7
I JE N [B I o= K PP 58
NLS5 AdAPTIECE ittt bbb bbb e b s et bbb b 59
I RN o A= o= OO 60
NL5 AdAFUNCTIECE tiiiiiiiiiiiic ittt e bbb bbb 61
NLD DLt T LaC ittt bbb bbb 62
R 1 w1 o) o1 PR 63
NLS5 SetINPUELVALUEC it bbb bbb 64
NLS5 GeLOULPUL tiiiitiiiii bbb bbb 65
NLS5 GetOULPULVALUE ittt bbb 66
NLD SEE ST @D ittt 67
NLS5 SetTIMEOUL ittt bbb bbb b 68
NL5 GetSimulationTime i 69
NL5 SEATE ttvuuruuueeeueessresseeeseeeseessseesseesseesseessesesaeesesssesssees e s a8 s et 70
NLS5 SiMULA L@ it bbb 71
NL5 SimulateInterval. e 72
NLS5 SimuUlate@STep i 73
NLS5 SAVETIC ittt bbb b e b b e bbb b b e b be e bbb bbb b be b 74
NLS5 GetDATASIZEu ittt 75
NL5 GEEDATAAL titiitiii it 76
NLS5 GetLasStData ittt bbb bbb 77
NLS5 GEEDA T A teriitiiitiitiitisie i b b be s 78
NL5 Delete@OldData it 79
CATLEACNIMENTS ..o 80
END USER LICENSE AGREEMENToooiiiiiiiie e 81

User’'s Manual

|. Introduction

EY NL5DLL User’s Manual

What is NL5 DLL

NL5 DLL is a standard Windows dynamic-linked library (DLL) included into NL5 Circuit Simulator
package. It performs transient simulation of circuits created by NL5 Circuit Simulator, provides raw
simulation data, allows modification of circuit parameters, adding data traces, and some other operations
through DLL API functions. NL5 DLL can be used as an analog simulator which is started and
controlled from other applications and tools (MATLAB, Python, custom C/C++ code) , and as an analog
co-simulation tool working with digital simulation tools, for example SystemVerilog simulators
(through DPI interface).

NL5 DLL user is supposed to be familiar with NL5 Circuit Simulator principle and operation. Please
refer to NL5 Circuit Simulation Manual and Help for information.

For most of circuits, DLL simulation results will be identical to NL5 simulation results. However, due to
specifics of compilers used for DLL (Microsoft Visual C++) and NL5 (Borland Builder), there could be
very slight variations, specifically at switching points. Typically, the difference in resulting waveforms
should be within one simulation step, which should not be critical for overall circuit behavior. That
difference will be minimized as much as possible in the future versions of NL5 and DLL.

Please use public resources or specific documentation for general information about dynamic-linked
libraries, SystemVerilog, and digital simulation tools.

Version

Current released Version and Revision of NL5 DLL is always the same as Version and Revision of NL5
Circuit Simulator. This guarantees full compatibility in terms of components, models, features, and
performance. However, there is nothing wrong in using different VVersions/Revisions of DLL and NL5.

Current Build of DLL can be different from NL5, due to possible DLL and NL5 specific fixes and
modifications.

NL5 DLL is distributed as part of NL5 complete package, as well as separate, DLL only compressed
file. The package, all files, and documentation can be found at nl5.sidelinesoft.com.

Files

NL5 DLL is a standard Windows dynamic-linked library (DLL) created using Microsoft Visual C++.
The following files are distributed to customers:

- nl5 dll 32.d11

- nl5 dll 32.1ib

- nl5 dll 64.d11

- nl5 dll 64.1ib

- nl5 dll.h

- nl5 dll.pdf - this Manual

- wMaTLaB/ - demo files for MATLAB

- SystemVerilog/ - supporting files for SystemVerilog

- systemVerilog/Vivado/ - supporting files for co-simulation with Vivado

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

License

NL5 DLL does not require a license. Instead, it can simulate only files created by NL5 Simulator
running with the License which has DLL option enabled. For demonstration purposes, small files
(containing not more than 10 components) still can be simulated without DLL option.

DLL option can be selected while ordering the License. If you own NL5 License already, and want to

include DLL option into your License, please contact us at nl5.sidelinesoft.com, or send email to
nl5@sidelinesoft.com.

http://nl5.sidelinesoft.com/
mailto:nl5@sidelinesoft.com

LLLLLLLLLLLLLLLLLL

I1. Using DLL

EY NL5DLL User’s Manual

Functions

Function parameters
The following parameter types are used in DLL functions:

int - 32-bit integer
double - 8-byte floating point
char* - pointer to null-terminated ASCII (1-byte) character string (character array)

Some functions return doub1e values through pointers to doubie variable (double*) provided as a
parameter of the function.

Function result

Most of DLL functions return integer value: function result. If function result is negative, it is an error
code. Only error code -1 is currently used, however more error codes may be added in the future. It is
not recommended to continue DLL execution if error code was received, since it may result in DLL
crash.

If error code is returned, text description of the error can be obtained by NL5 GetError function:

if (NL5 GetValue(ncir, "R1.R", *value) < 0)
{
printf ("$s", NL5 GetError()):;

}

In case of successful execution, some functions return 0, and some functions return non-negative integer
value, with the meaning depending on the function. For example, N1.5_open returns integer value: circuit
handle, n1.5 GetText returns number of characters placed into the character array, etc.:

int ncir = NL5 Open("rc.nl5");
if (ncir < 0)
{
printf ("$s", NL5 GetError()):;
}

EY NL5DLL User’s Manual

Functions N1.5_GetInfo and NL5 GetError return pointer to null-terminated ASCII character string:

char* str = NL5 GetInfo();
printf ("%s", str);

The content of that string is valid only until execution of the next DLL function: then it will be changed.
If the text requested by calling those functions is needed for the future use, it is user’s responsibility to
copy it to safe location.

Handles

Handle is an index of the object in the internal DLL objects list. Handle is non-negative integer value.
Some functions return handle as a function result. The handle referring to a specific object can be used
as a parameter for other functions, related to that object. Handles are used for circuits, component
parameters, inputs/outputs, and traces.

For example, function result of function 1.5 open is circuit handle. Once received, the handle can be
used as an ncir parameter for many other functions, such as NL5 Simulate, NL5 GetValue,
NL5 GetParam, NL5 GetTrace, €tC.

int ncir = NL5 Open("rc.nlb");
if (ncir < 0)
{
printf ("%$s", NL5 GetError()):;
}

double r;
if (NL5 GetValue(ncir, "R1.R", &r) < 0)
{
printf ("$s", NL5 GetError()):;
}

EY NL5DLL User’s Manual

Using DLL

Error message

A general function which may be called after calling practically any other function is N5 GetError. It
returns text description of the error which might occur while executing previous function, or “ox” if
execution was successful:

if (NL5 GetValue(ncir, "R1.R", *value) < 0)
{
printf ("$s", NL5 GetError()):;

}
DLL information

A function you might want to call at DLL startup is N15_GetInfo. It returns information about DLL:
version and date. After calling NLS GetInfo, call N15 GetError to see DLL information:

char* str = NL5 GetInfo();
printf ("%s", str);

This information is useful for troubleshooting, so please provide it when submitting bug reports or other
requests:

10

EY NL5DLL User’s Manual

Schematic

To perform simulation, a schematic should be loaded into the DLL from a schematic “*.n15” file. Once
loaded, the schematic is stored in the DLL memory, and can be used for simulation. During simulation,
the circuit component parameters can be modified by DLL, and simulated data will be saved as a traces.
A modified schematic with simulation data can be saved back into the schematic file.

To load schematic into DLL use n1.5_open function. If file name does not have a path, DLL will look
for a file in the same directory where DLL is located. The function returns non-negative circuit handle
ncir, Which will be used in other DLL functions to identify the circuit:

int ncir = NL5 Open("rc.nlb");
if (ncir < 0)
{
printf ("$s", NL5 GetError()):;

}

If schematic file could not be loaded for any reason, a negative error code is returned. Also, an error
occurs if requested file consists of too many components (currently 10), and is not DLL-enabled. Call
NL5 GetError function to get text description of the error.

You can load several circuits at once by calling n1.5 open: a unique circuit handle will be returned for
each circuit. If circuit is not needed anymore, it can be closed by n1.5 c1ose function, however closing
the circuit is not required.

The circuit can be saved back to the same schematic file by calling N5 _save, or to a new file by
calling NL5_saveas functions:

int ncir = NL5 Open("rc.nld");

NL5 SetValue (ncir, "R1.R", 123.456);
NL5 SaveAs (ncir, "rc _new.nl5");

NL5 Close(ncir);

Use these functions to save schematic back to the file if any modification of component parameters were
made by DLL, IC (Initial Conditions) were saved, or if you want to save schematic with obtained
simulation data.

To save schematic with transient data, make sure the “Save with transient data” option is set in the

schematic file. To set the option, open schematic file in NLS, go to File/Properties/Save, select “Save
with transient data” checkbox, and save schematic into the file.

11

EY NL5DLL User’s Manual

Parameters

DLL functions can access and modify component parameters. Parameters can be modified before
simulation is started, as well as between DLL simulation calls. This is similar to pausing NL5
simulation, changing the parameter, and continuing the simulation.

Please be aware that changing the parameter between DLL simulation calls will result in recalculating
the system matrix, and switching to a new linear range of simulation. If parameters are being changed
often, it may affect simulation speed. For better performance while co-simulation, DLL input/output
functions can be used: those functions will modify the value of voltage/current sources of the schematic
in a “continuous manner”, keeping the simulation in the same linear range.

To specify parameter name in parameter-related function, use component parameter name in the format
<component>.<parameter> ("R1.R", "v1.v"). See NL5 Circuit Simulator Manual for details (User
Interface/Data format/Names).

There are two methods to access component parameters:

1. Direct;
2. Through parameter handle.

Direct method is an easiest one, however not optimal in terms of performance. To get component
parameter value, use N1.5 Getvalue function. It returns value into the variable of doub1e type. The
pointer to that variable is passed to the function as a parameter:

double wvalue;
NL5 GetValue (ncir, "R1.R", *value);

See Reference for explanation on working with different parameter types.

To set parameter value, use function NL5_Setvalue:

NL5 SetValue (ncir, "R1.R", 123.456);

To get/set parameter value represented as a text, use N1.5 GetText and NL5 setText functions. These
functions are applicable to practically all parameter types, including numerical. If numerical parameter
is defined as a formula, those functions will get/set text of the formula:

char str[100];
NL5 SetText (ncir, "V1.Slope", "Linear");

NL5 GetText (ncir, "V1.Slope", str, 100);
// returns str = "Linear"

NL5 GetText (ncir, "R1.R", str, 100);
// returns str = "1.23e-3"

NL5 SetText (ncir, "R2.R", "=R1.R*2");

NL5 GetText (ncir, "R2.R", str, 100);
// returns str = "=R1.R*2"

12

EY NL5DLL User’s Manual

Accessing parameters through parameter handle would be a better option if parameter is being
accessed at least several times. Using that method improves performance by parsing parameter name
and searching for required component and parameter only once while obtaining parameter handle.

Use NL5 GetParam function to obtain the parameter handle first:

int nparam = NL5 GetParam(ncir, "R1.R");
if (nparam < 0))
{
printf ("%s", NL5 GetError()):;
}

Then use the parameter handle in functions NL5 GetParamvalue, NL5 SetParamValue,
NL5_GetParamTeXt,and NL5 SetParamText:

SetParamValue (ncir, nparam, 1.0);
double r;
GetParamValue (ncir, nparam, &r);

13

EY NL5DLL User’s Manual

Traces

DLL will store simulation data for all traces specified in the schematic file. The data can be accessed
through the trace handle, obtained by NL5 GetTrace function:

int ntrace = NL5 GetTrace(ncir, "V(R1)");
if (ntrace < 0))
{
printf ("$s", NL5 GetError()):;
}

A new trace can be added using functions N5 AddvTrace, NL5 AddITrace, NL5 AddPTrace,

NL5 AddvarTrace, and NL5 AddFuncTrace. These functions return trace handle. In the following
example, a trace with voltage across resistor R1 is added:

int ntrace = NL5 AddVTrace (ncir, "R1");
if (ntrace < 0))
{
printf ("%s", NL5 GetError()):;
}

To minimize memory consumption, or accelerate simulation, any trace can be deleted by
NL5_DeleteTracefunCﬁ0nZ

NL5 DeleteTrace(ncir, ntrace);

14

EY NL5DLL User’s Manual

Co-simulation

NL5 DLL can be used for co-simulation with other tools, such as system-modeling, behavioral modeling
tools, or digital simulators. DLL will provide fast and reliable simulation of analog part of the system.
To provide better performance of co-simulation, the following system structure is suggested.

The analog circuit has constant voltage or current sources (Labels, VVoltage or Current source
components) specified as inputs. The voltage or current value of those inputs are modified by the other
tool before calling DLL simulation.

Also, the analog circuit has Labels specified as outputs. When DLL simulation is completed for
requested interval, the voltages at specified outputs are transferred to the other tool as a result of analog
simulation.

Here is an example of an analog part of the system, with two inputs (*in1~, “in2~) and two outputs

“outl”, “out2”).

R2 C1 outl
&+ antt | |2 &
inl Ri
® A — b1 out2
]
inZ R3 + k1 #
i Wi

o1

R4

G —

Please note that input signals are modified in a “continuous” manner, keeping the simulation in the same
linear range, thus providing fast simulation. However, any component parameters can be modified using
parameter-based functions (for example 1.5 setvalue) as well: this will result in recalculating the
system matrix, and switching to a new linear range of simulation.

If state of switch component needs to be modified, use voltage-controlled switch controlled by the input
voltage source.

Please note that DLL won'’t store all simulated data at specified outputs: only last simulated data at the
output is being stored until the next simulation call. However, DLL will still store data of all traces,
specified in the circuit file, or added by calling DLL function. When the circuit is saved back into
schematic file, the simulated data of those traces will be saved too, if “Save with transient data” option is
set in the schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select
“Save with transient data” checkbox, and save schematic into the file.

Use inputs/outputs DLL functions to specify inputs and outputs for co-simulation.

15

EY NL5DLL User’s Manual

Inputs/Outputs
Inputs/outputs can be accessed through the input/output handle.
Inputs. Call L5 GetInput function to specify the input. 3 types of components can serve as an input:

- Label component, model ““V” (constant voltage source)
- Voltage source component (V), model “V” (constant voltage source)
- Current source component (1), model “I”” (constant current source)

Provide the label/component name as a parameter of the function. Please note that once component is
selected as an input, its model will be automatically set to the model VvV’ (constant voltage source), or
model “I” constant current source). The function returns non-negative integer value: input handle:

int nin = NL5 GetInput(ncir, "inl");
if(nin < 0))
{

printf ("%s", NL5 GetError()):;

}
Use the handle and a desired source value to set input voltage/current by N5 setInputvalue function:

int nin = NL5 GetInput (ncir, "inl");

NL5 SetInputValue(ncir, nin, 10.0);

Outputs. Call n1.5_cetoutput function to specify the output. Only one component type can serve as an
output: the Label. Provide the label name as a parameter of the function. Please note that once the label
is selected as an output, its model will be automatically be set to the model “Label”. The function returns
non-negative integer value: output handle:

int nout = NL5 GetOutput (ncir, "outl");
if (nout < 0))

{
printf ("$s", NL5 GetError()):;

}

Use the handle and a pointer to the double variable to obtain output voltage by N5 Getoutputvalue
function:

int nout = NL5 GetOutput (ncir, "outl");
double v;
NL5 GetOutputValue (ncir, nout, &v);

Typically, n1.5 setInputvalue functions should be called for each specified input before calling DLL
simulation function, and N1.5 Getoutputvalue functions should be called for each specified output after
simulation function returns. However, those functions can be called any time. Also, only functions for
inputs/outputs that changed, or are needed for another tool, can be called.

16

EY NL5DLL User’s Manual

Simulation

Simulation is performed with simulation step defined in the schematic file (see NL5 transient settings:
Transient/Settings/Calculation step). If needed, the step can be modified any time by N1L5 setstep
function:

double step = 1.0e-6;
NL5 SetStep(ncir, step);

To prevent DLL from being “stuck” due to erroneous code of C-code component (infinite while/do/for
loop), or inability to resolve states of piece-wise linear components, a simulation time-out can be set
up using function NL5_SetTimeout:

int time out = 3;
NL5 GetTimeout (ncir, time out);

If simulation time of one transient step exceeds the time-out value (in seconds), the simulation will stop
with error message. Time-out equal to zero disables time-out detection.

DLL keeps track on current simulation time in the internal simulation time variable. When
simulation function is called, simulation is continued for requested interval starting from current
simulation time. Current simulation time value can be obtained by NL5 GetsSimuationTime
function:

double current time;
NL5 GetSimulationTime (ncir, ¤t time);

To start simulation, call N1L5 start function. It resets simulation time t0 0, initializes circuit
components, erases existing simulation data, and calculates initial state of the circuit according to
specified Initial Conditions. This function should be called first to start simulation from t=0, prior to
calling any simulation functions. When n1.5_start returns, the simulation data consists of circuit state
at t=0. The simulation data at t=0 can be obtained by data-related functions described later.

However, calling N5 start is not required. It will be executed automatically if any of simulation
functions is called, and simulation has not been performed yet.

After simulation is started, there are three methods of performing simulation:
1. Simulate;
2. Simulate interval;

3. Simulate step.

You can use just one method during all simulation, or any combination in any order.

17

EY NL5DLL User’s Manual

Simulate method is performed by N5 simulate function, and it runs simulation at least for requested
interval. First, current simulation time variable is incremented by requested interval. Then
simulation is performed until the time of calculated data is equal or greater than new

simulation time. The function does not change simulation step in order to stop exactly at the end of
requested interval (new simulation time), SO the time of the last calculated data may exceed new
simulation time. When next simulation function is called, simulation will be continued with
simulation step equal to the last simulation step.

Here is an example of two consecutive calls of N5 _simulate function. The first call was made at t =
3s (not shown on the graph), with interval = 3s:

NL5 Simulate(ncir, 3.0);

Simulation stopped when the time of the data point exceeded new simulation time = 6s. The time
of the last calculated data point = 6.5s, the last simulation step = 1s.

interval = 3
/—""
5 6 7 8 9 10

I
simulation_time =6

When n15 simulate function with the same 3s interval is called again, simulation continues with the
same simulation step = 1s, and stops at simulation time = 9s, With last calculated data point at t =
9.5s:

interval =3
B>
5 I‘Ii 7 8 IQ 10
simulation_time =6 simulation_time =9

Using NL5 simulate function provides the best simulation performance. It won’t decrease simulation
step at the end of current linear range, so that there is no need to restore the step back as simulation
continues. Thus, the simulation will be performed in a fastest manner, regardless of simulation
interruptions.

18

EY NL5DLL User’s Manual

Simulate interval method is performed by NL5 SimulateInterval function, and it runs simulation
exactly for requested interval . unlike NL5 simulate, it will decrease simulation step if needed to stop
exactly at the end of the requested interval. When next simulation function is called, simulation step
will be restored, and a new linear range will be started.

Here is an example of two consecutive calls of NL5 simulateInterval function. The first call was
made at t = 2.5s (not shown on the graph), with interval = 3.5s:

NL5 SimulatelInterval (ncir, 3.5);

Simulation was performed with constant simulation step = 1s. Simulation stopped exactly at
simulation time = 6s, as requested. In order to do that, the last simulation step was decreased from
1s down to 0.5s:

interval =35

t 1 t t t }
5 Fli 7 8 9 10
simulation_time =6

When N15 simulateInterval IS called again with requested interval = 3.5s, simulation step is
restored back to 1s, and simulation continues:

interval =35 interval = 3.5

t 1 t t t t
2 Elﬁ 7 8 9 10
simulation_time =6 simulation_time =9.5

In this call, simulation step was also decreased at the end of the interval from 1s down to 0.5s, in order
to stop exactly at 9.5s.

Due to possible change of simulation step even within the linear range, using of

NL5 SimulateInterval may result in extremely slow simulation (especially if requested interval is
small, and comparable with simulation step). Use this function only if it is really needed for your task.

19

EY NL5DLL User’s Manual

Simulate step method is performed by N5 simulatestep function, and it executes just one
simulation step. At the end, simulation time is incremented by that simulation step, so that
simulation time IS always equal to the time of last calculated data point.

Please note that in some situations (the very beginning of simulation, switching, change of linear range,
etc.) more than one simulation step should be executed without interruption. In this case,
NL5 simulatestep Will execute more than one simulation step.

Here is an example of simulation using NL5 simulatestep function:

NL5 SimulateStep (ncir);

Most of the calls were in the same linear range of the circuit, so that only one step was executed.
However, when switching occurs at t = 7.5s, two small uninterrupted steps were executed.

NL5 simulatesStep function can be used if DLL performs co-simulation with another simulation tool,
when it should continuously provide state of analog circuit with minimal possible time interval.

One more function related to simulation is N5 savetc. Calling this function is similar to executing
command Transient/Save IC in the NL5 Circuit Simulator. Current Initial Conditions are saved into
components in the DLL memory. Use NL5_save Of NL5_SaveAs t0 Save components with new Initial
Conditions into the schematic file.

20

EY NL5DLL User’s Manual

Simulation data

NL5 saves all simulated data points into DLL memory. The obtain data of a specific trace, first obtain
trace handle by calling NLS_GetTrace function:

int ntrace = NL5 GetTrace(ncir, "V(R1)");
if (ntrace < 0))
{
printf ("$s", NL5 GetError()):;
}

There are three ways to retrieve the data of the trace:

1. Read interpolated data;
2. Read data of a specific data point;
3. Read last data.

To read interpolated data at specific time, use NL5 Getbata function with the time as a parameter, and
pointer to doub1e for amplitude of the data point:

double data;
NL5 GetData (ncir, ntrace, 1.234, &data);

Please be aware that interpolated data are calculated using linear interpolation, and may not accurately
represent actual signals of the circuit between calculated data points.

To read the data of a specific data point, use NLS_GetDataat function with index of the data point.
Provide pointers to doub1e variables for time and amplitude of the data point:

double t, data;
int index = 123;
NL5 GetDataAt (ncir, ntrace, index, &t, &data);

Data point index is zero-based: index of the first data point is 0, index of the last data point is equal to
number of data points minus 1. Use NL5 Getbatasize function to obtain number of data points
available for the trace:

int ndata = NL5 GetDataSize (ncir, ntrace);
if (ntrace < 0))
{
printf ("%s", NL5 GetError());
}

Please note that the number of data points can be different for different traces due to data compression.

21

EY NL5DLL User’s Manual

To read last data, use NL5 GetLastData function with pointers to doub1e variables for time and
amplitude of the data point:

double t, data;
NL5 GetLastData(ncir, ntrace, &t, &data);

This function returns the data of last calculated data point.

As mentioned before, n1.5 start function erases all existing simulation data. Then, during simulation,
all data points are being stored into DLL memory. There is a special algorithm in place to reduce the
memory required for the data which are not changing (constant voltage/current supplies, output of
digital components, etc.). However, if simulation is performed with small simulation step, the total
available memory of the DLL can be easily exceeded.

If large amount of simulated data is expected, it is recommended to upload simulated data to your
application after from time to time, and delete that data from DLL memory by calling
NL5 DeleteOldData function:

NL5 DeleteOldData (ncir);

In fact, that function does not erase all the data: it always leaves the very last calculated data point, or
two data points, in order to be able to obtain interpolated data in the new interval.

22

EY NL5DLL User’s Manual

In the following example, simulation stopped at simulation time = 6s, With last simulation step =
1s, and last calculated data point at t = 6.5s:

interval = 3
E/E/
5 6 7 8 9 10

. b
simulation_time =6
When NL5_Deleteoldpata function is called, it will erase old data, except last two points:

interval = 3

gl

5 Fli 7 8 9 10
simulation_time =6

After the next call of N1L5 simulate, the stored data would be:

interval =3
=
6] Elﬁ 7 8 ? 10
simulation_time =6 simulation_time =9

Now, all the data of the new calculated interval between t = 6s and t = 9s can be retrieved using
interpolation.

23

EY NL5DLL User’s Manual

Using DLL with MATLAB

When using NL5 DLL with MATLAB, please use header file n15 d11.n located in the MATLAB
folder of NL5 DLL download package. Due to the way MATLAB is handling Windows DLLs, all
extern “c” declarations must be removed from the header file.

A simple example of the MATLAB code d11 example.m can be found in the vatraB folder of NL5
DLL download package. It opens schematic file d11 example.n15, changes value of R1 is specified
range, runs transient for each R1 value, reads transient data of trace v (out), and displays results as a 2-
D surface:

4 Figure 1 — O X

File Edit View |Insert Jools Desktop Window Help >

Ddde @08 RE

Please note that you may need to change path of DLL and header file in function 10adlibrary:

loadlibrary('Your Path\\nl5 dll 64.d11l', 'Your Path\\nl5 dll.h'");
and path of the schematic file in the function ca111ib which calls DLL function 15 open:

is = calllib('nl5 dl1 64', 'NL5 Open', 'Your_Path\\dll_example.n15');

24

EY NL5DLL User’s Manual

Here is the code:

clear;

clc;

close all;

R=logspace (-1,1,50);

% load library
loadlibrary('nl5 dll1 64.d11', 'nl5 dll.h'");

% open schematic
is = calllib('nl5 dll 64', 'NL5 Open', 'dll example.nl5');
calllib('nl5 dl1 64', 'NL5 GetError');

% get trace handle
it = calllib('nl5 dl1 64', 'NL5 GetTrace', is, 'V(out)');

% create pointers to data
pd = libpointer ('doublePtr', 0.0);

for k=1:50
% set R1 value
calllib('nl5 dll 64', 'NL5 SetValue', is, 'R1', R(k));
% simulate for 10 s
calllib('nl5 dll 64', 'NL5 Start', is);
calllib('nl5 dl1 64', 'NL5 Simulate', is, 10.0);
% read data
for i=1:100
t = 1i*0.1;
calllib('nl5 dl1 64', 'NL5 GetDbata', is, it, t, pd);
Z(k,1)=pd.value;
end
end
% close document
calllib('nl5 dll 64', 'NL5 Close', is);
calllib('nl5 dl1 64', 'NL5 GetError');
% unload library
unloadlibrary 'nl5 dll 64';

[X,Y] = meshgrid(1:100,1:50);
surf(X,Y,2);

shading flat;

colormap jet;

colorbar;

ylim ([0 501);

25

EY NL5DLL User’s Manual

Using DLL with SystemVerilog

NL5 DLL can be used for co-simulation with SystemVerilog digital simulators, where DLL functions
are being called through DPI — Direct Programming Interface.

Files
The following files can be used for interfacing DLL with SystemVerilog DPI:

nl15 d11 32.1ib : library file for 32-bit OS
nl15 d11 64.1ib : library file for 64-bit OS
nl5 d1l 32.d11 :DLL file for 32-bit OS
nl5 d1l 64.d11 : DLL file for 64-bit OS

nl5 sv.svh : header file for SystemVerilog code

nl5 sv.c : “wrapper” C-code

svdpi.h : header file for “wrapper” C-code
Using DLL

To use DLL with SystemVerilog code, link the project with appropriate DLL library file (32 or 64 bit),
and place appropriate NL5 DLL file into the directory where it can be accessed. Also, include
n15 sv.svh header file into Verilog code. This file contains prototypes of DLL functions.

Refer to the documentation of your SystemVerilog simulation tool for details on creating the project,
and using DPI.

26

EY NL5DLL User’s Manual

Using DLL with C-code “wrapper”

If DLL library file cannot be linked to the SystemVerilog project for any reason, NL5 DLL can be

accessed using provided “wrapper” C-code n15 sv.c. Compile and link that code to the SystemVerilog
project. Please note that different tools may require their own specific header file svdpi.h. Refer to the
documentation of your SystemVerilog simulation tool for details on creating the project and using DPI.

Include n15 sv.svh header file into SystemVerilog code: this file contains prototypes of DLL
functions.

Place appropriate DLL file (32 or 64 bit) into the directory where it can be accessed. Before calling any
DLL functions first time, DLL should be loaded into memory by calling N1.5 openpLL function with
appropriate dll file name as a parameter. The function returns 0 if successful, or negative error code if
failed. The following error codes are currently used:

int result = NL5 OpenDLL("nl5 dll 32.d11");
if (result == -1)
{

// DLL not found. Handle the error here

}
else if(result == -2)

{

// Some DLL functions not found. Handle the error here

}
else if(result == -3)

{
// DLL already loaded. Handle the error here

}

else

{
// OK

}

Once DLL is successfully loaded, all DLL functions can be called.

27

EY NL5DLL User’s Manual

Running co-simulation demo with Xilinx Vivado

Creating demo project

There are many ways of creating and configuring Vivado project. Please refer to Vivado Manual, or use
public on-line tutorials on Vivado for more information.

For this instructions, Vivado HLx Edition, v2017.4 (64-bit) was used. For 32-bit version, the following
modifications should be made:

1. Instead of n15 d11 64.d11,usenl5 d11l 32.d11. It can be found in the NL5 DLL installation
package.

2. Inthe n15 demo.sv source file, change the line
ret = NL5_OpenDLL("n15_dll_64.dll");

to
ret = NL5 OpenDLL("nl5 dll 32.d11");

To create a new project, open Vivado:

/' Vivado 20174

Flle Flow Tools Window Help = G QuickAccess

VIVADO? € XILINX

HLx Editions

Quick Start

Create Project

Learning Center

utorials

Tdl Console

28

EY NL5DLL

User’'s Manual

Select “Quick Start” / “Create Project”, Click “Next”

4 MNew Project

Project Name

Enter a name for your project and specify a directory where the project data files will be stored.

Projectname: |nl5_demo

Project|ocation: CuProjectsivivado

/| Create project subdirectory

Project will be created at: C:/Projectshivadoinls_demo

Project name: enter project name (“nl5_demo”), click “Next”:

[

New Project

Project Type
Specify the type of project to create

O

RTL Project
YYou will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

/| Do nat specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation

10 Planning Project
Do not specify design sources. You will be able to view partpackage resources.

Imported Project
Create a Vivado project from a Synplify, XST of ISE Project File

Example Project
Create a new Vivado project from a predefined template.

29

EY NL5DLL

User’'s Manual

Project type: click “Next”:

4 New Project
Default Part
Ghoose a default Xilinx part or board for your project. This can be changed Iater.
select | {8 Parts | [l Boards
© Fiter
Product category. | All ~ | Speedorade: Al
Eamily Al v | Temporade | Al
Package Al v
Reset Al Fiters
Searcn: | O v
0PN Available LUT Block
Fart Count 10Bs Elements PTOPS Rayg
@xeTiome7s2L 676 300 41000 s2000 135
@xcTT0MmETe- 676 300 41000 82000 135
@xcTiotpo4B42L 484 285 41000 82000 135
@ xcTKT0HDEETEAL 676 300 41000 82000 135
@xcTionDuBs2L 484 285 41000 s2000 135
©xcTkIOMReTe2L 676 300 41000 82000 135
@xcTk1B0modsa-3 484 285 101400 202800 325
<
©)
@)

Ultra
RAMs

Gb
Transceivers

8
8
4
8
4
8
4

GTPE2
Transceive

0
0
0
[
0
o
0

Default part: please note that list of parts will depend on your installation. Select Xilinx part or board,

click “Next”:

4 New Project

VlVADO' New Project Summary

HLx Editions

Default Part xc7k70tfbv676-1
Product Kintex-7
Family: Kintex-7
Package: fv676
Speed Grade: -1

v
i‘ XILI NX To create the project, click Finish
ALL

RAM

@ Anew RTL projectnamed ni5_demo’ will be created.

@ The default part and product family for the new project

30

EY NL5DLL

User’'s Manual

Click “Finish”

nl3_demo - [C:/Prejects/vivado/nl3_demo/nl3_demo.xpr] - Vivade 20174 - a X
File Edit Flow Tools Window Layout View Help | © QuickAccess Ready
= | I - I 25 Default Layout v

4 4

Flow Navigator PROJECT MANAGER - nI5_demo ? X

v PROJECT MANAGER A -

Sources ? 00X Project Summary 200X
£+ Settings =
a T & + o ;

Add Sources Settings Edit
Design Sources
Language Templates 5 Constraints Project name nis_demo
“F IP Catalog ~ Simulation Sources Project location: CuiProjectsivivado/nl5_
sim_1 Product family. Kintex-7
v IPINTEGRATOR | Project part: XCTK7OtfbvE76-1
Hierarchy Libraries Compile Order
Create Block Design Top module name. Mot defined
. Target language Verilog
Open Block Design Properties 2 _0OC X
Simulator language Mixed
Generate Block Design
-3
v SIMULATION Synthesis
Run Simulation Select an object to see properties Status: Not started
Messages: Mo errors or warninas i
v RTLANALYSIS < z
> Open Elaboraled Design TclConsole | Messages | Log | Reports | Design Runs X ?_00
= a

v SYNTHESIS a = 2 %

P Run Synthesis Name Constraints Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LL

~ > synth_1 constrs_1 Mot started
en Synthesized Desic N
> Open Synthest Design & impl_1 constrs_1 Mot started
~ IMPLEMENTATION

P RunImplementation

> Open Implemented Design
oL >

The project has been created, project directory i

C:\Projects\vivado\nl5 demo

31

EY NL5DLL User’s Manual

Creating library file

To create library file dpi . a, copy the following files from systemverilog directory of the NL5 DLL

installation package to Vivado temporary directory
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

nl5 sv.c
svdpi.h

In the Vivado Tcl Console command line, type:

xsc nl5 sv.c

For running NL5 DLL demo, copy new dpi . a file from
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

to c:\Projects\vivado\nl5 demo\nl5 demo.sim\sim 1l\behav\xsim
as described in the next section.

32

EY NL5DLL User’s Manual

Configuring and running demo

In the NL5 DLL installation package, go to systemverilog\vivado\src directory, and copy the
following files into project directory c: \Projects\vivado\nl5 demo

nl5 demo.sv
nl5 sv.svh

Select “Project manager” / “Add Sources”:

/ Add Sources X
V|\4A\DO' Add Sources
HLx Editions This guides you through the process of adding and creating sources for your project

Add or create constraints
® Add or create design sources

Add or create simulation sources

& ALINX

=

Add Sources: select “Add or create design source”, click “Next”:

4 Add Sources ®

Add or Create Design Sources

Specify HOL, netlist, Block Design, and IP files, or directeries containing those file types to add to your project. Create a new source
file on disk and add it to your praject

+

Use Add Files, Add Directories or Create File buttons below

Add Files | ‘ Add Directories ‘ | Create File

(?) Next
\z) = Back Mext = Cancel

33

EY NL5DLL

User’'s Manual

Add or Create Design Sources: click Add Files, select c:\pProjects\vivado\nl5 demo
directory, select n15 demo.sv and n15 sv.svh files (using Ctrl key), click “OK”:

Click “Finish’;

4 AddSources X

Add or Create Design Sources

Specify HOL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create a new source
file on disk and add it to your project

+,

Index MName Library Location
@ 1 nl5_demo.sv xil_defaultio CiProjectsiivado/nl5_demao
@ 2 ni5_sv.svh MNIA C:Projectsiivade/nls_demo

Add Files | | Add Directories | | Create File

Scan and add RTL include files into project

<+ Copy sources into project

lext =
4 nis_demo - [C:/Projects/vivado/nl5_demo/ni5_demouxpr] - Vivado 2017.4 - o x
File Edit Flow Tools Window Layout View Help Q- Quick Access Ready
= > W & = £5 Default Layout v
. P
Flow Navigator PROJECT MANAGER - nl5_demo ?
~ PROJECT MANAGER A
Sources ? 00X Project Summary x nls den 4 » = 7 OO
£+ Settings
Q = & + &
Add Sources Settings Edit
. Templat ~ = Design Sources (2) A
anguage Templates
guag: P 5 % Verllog Header (1) Project name: ni5_demo
1F IP Catalog @2 ni5_demo (nl5_demo sy Project location CiProjectshivadoinis_der
> Constraints Product family Kintex-7
~ IPINTEGRATOR v SimuationSources)~ | Projectpart XCTKTOUDYE76-1
Create Block Design Hierarchy | Libraries Compile Order Top module name nis_demo
Open Block Design . Targetlanguage: Verilog
Source File Properties ?_0@BX Simulator language Mixed
Generate Block Design
@ nl5_demo.sv -3
- ~ | syntnesis
SIMULATION 7 Enabled Y
Run Simulation
Location CoiProjectshivado/nl5_demoini5_demo.sresisol~ Status: Not started
___ > | Messages: No errors or warnings
v RTLANALYSIS General Properties q 5
> Open Elaborated Design
TelConsole | Messages | Log | Reports | DesignRuns ?_00
v SYNTHESIS Qlz & + %
P Run Synthesis Name Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LUT
> Open Synthesized Design v [>synth_1 consts_1 Notstarted
imp_1 constrs_1 Notstarted
~ IMPLEMENTATION
» RunImplementation
> Openimplemented Design
v PROGRAM AND DEBUG - <

34

EY NL5DLL

User’'s Manual

Select “Project manager” / “Settings”:

Select “Project Settings” / “Simulation”, “Elaboration” tab, enter:

4 Settings

Q.

Project Settings
General
simulation
Elaboration
Synthesis
Implementation
Bitstream

> IP

Tool Settings
Project
1P Defaults
Source File
Display
WebTalk
Help
> TextEditor
3rd Party Simulators
> Colors
Selection Rules
Shorteuts
> Strategies
> Window Behavior

General

Spectty values for various setings usedthroughout the design flow. These settings applytothe g

current project

Name: nl5_demo

Project device: {8 xeTKTOMDVE76-1 (active)
Targetlanguage: | Verilog

Defautt liorary: xil_defaultiin

Top module name: ni5_demo

Language Options

Verilog options:

Generics/Parameters:

Loop count

verilog_version=Verilog 2001

G

1,000

xsim.elaborate.xelab.more_options = -sv_lib dpi

’

Settings

Q

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

> P

Tool Settings
Project
IP Defaults
Source File
Display
WebTalk
Help
> TextEditor
3rd Party Simulators
> Colors
Selection Rules
Shorteuts

Strategies
» Window Behavior

Simulation
Specify various settings asseciated to Simulation

Target simulator:

Vivado Simulator

Simulator language: Mixed

Simulation set & sim_1

Simulation top module name: nl5_demo

Compilation | Elaboration Simulation | Neflist | Advanced

xsim.elaborate. snapshot
xsim.elaborate.debug_level
xsim.elaborate.relax
xsim.elaborate.mt_level
xsim.elaborate.load_glbl
xsim.elaborate.rangecheck

xsim.elaborate.sdf_delay

typical

auto

sdfmax

xsim.elaborate.xelab.more_optiens -sv_lib dpi

xsim.elaborate.xelab.more_options

More XELAB elaboration options

e |

Apply

[Restore..

35

EY NL5DLL User’s Manual

Select “Simulation” tab, enter:
xsim.simulation.runtime = 1000ns

§ Setting X
Simulation

Project Settings Specify various seftings associated to Simulation y
LT - e
Simulation Target simulator: Vivado Simulator v
Elaboration
Smthesis Simulator language Wixed -
Implementation Simulation st i sim_1 -
Bitstream

s P Simulation top module name: | nl5_demo E‘

Tool Settings
Project Compilation | Elaboration | Simulation Netist | Advanced
IP Defaults
source File ysim simulate tcl post
Display xsim.simulate.runtime 1000ns
WebTalk xsim simulate log_all_signals
Helo xsim simulate custom_te

3 TextEdior xeim.simulate wdb
3rd Party Simulators xsim simulats saif_scope

> Golors xsim simulate saif
Selection Rules ysim simulate sail_all_signals

Shortcuts *sim.simulate.xsim.more_opfions
> Stategies
> Window Behavior

xsim simulate.runtime
Specify simulation run time

(2)
(2) oK ‘ Cancel ‘ ‘ Apply | ‘Besmre

Click “OK”

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation”. An error
message will pop up:

Run Simulation e

e ERROR: [Common 17-39] launch_simulation’ failed due to earlier errors.

Click “OK” two times. This step is required in order to force Vivado to create simulation directory, and
then copy required nl5 demo files into that directory.

In the NL5 DLL installation package, go to systemverilog\vivado\sim directory, and copy the
following files into simulation directory
C:\Projects\vivado\nl5 demo\nl5 demo.sim\sim l\behave\xsim

nl5 dll 64.d11
rc.nlb

Also, copy library file api.a, asdescribed in ”Creating library file” section.

36

EY NL5DLL

User’'s Manual

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation”.

After successful simulation, the results will be

shown in the Waveform Window:

4 nis_demo - [C:/Projects/vivado/ni5_demo/ni5_demoupr] - Vivade 20174 - o X
File Edt Flow Tools Window Layout View Run Help Ready
= 5 & X < » & 10] us vz (] £3 Defautt Layout v

Flow Navigator S8 SIMULATION - Behavioral Simulation - Functional - sim_1 - nl5_demo

~ PROJECT MANAGER N

sco bj Untitied 2
£ Settings N
Q = = ® Q # |1 W a a o« [« T
Add Sources
Name Name Valu ™
L Templat
angusge Templates @ ni5_demo > R ref(31:0] 0
- ° Name = Value
*F IP Catalog @ giol > % nir31:0] 0
> Znouratal o
~ IPINTEGRATOR > ®nin_ciE1o] o
Create Block Design > %nin_RI310] 1
x 290
% out 0
a1 1
bv2 0
~ SIMULATION v P
Run Simulation
¥ RTLANALYSIS
> Open Elaborated Design
< > < P
~ SYNTHESIS
Run Synthesis Tel Console
> Open Synthesized De Q = 2 Il 8B E @
$finish called at time : 991 ns : File "C:/Projects/vivado/nlS5_demo/nl5_demo.srcs/scurces_l/imports/Demo files/nl5_d*
~ IMPLEMENTATION INFO: [USF-XSim-9€] XSim completed. Design snapshot 'nlS_demo behav' loaded -
INFO: [USF-¥5im-57] XSim simulation ran 1000ns -
Run Implementation launch_simulation: Time (s): cpu = 00 ; elapsed = 00:00:08 . Memory (MB): peak = 813.086 ; gain = 0.000 =
> OpenImplemented Design < B
Sim Time: 991 ns

To see analog waveforms of the simulation, start NL5 Circuit Simulator, open nl5 file with simulation

results

C:\Projects\vivado\nl5 demo\nl5 demo.sim\sim 1\behav\xsim\result.nl5

and open transient window:

AL NLS - [result - Transient]

Fl\e Edit Schematic Transient AC Tools Window Help

EECEIEIEY D EEY

IEREIEEEE

[EEEIE

R =R O e e e e SR S O e SR

AljALC D

result

Li0 4R TAM AW LKLY

31MB | Ciil

T
—

& 3|é{>]>;ﬂ

FHBw BRI tEas

=l

B ST SF & o7 o [

Shift | Click to move cursor

37

EY NL5DLL User’s Manual

Demo circuit

A simple oscillator circuit with 3 inverters is used as a demo:

Digital part (Y1, Y2, Y3) of the circuit is disabled, since it will be simulated by SystemVerilog. Labels
“out”, “in_C”, and “in_R” are used for passing signals between analog and digital parts.

When SystemVerilog simulation is completed, the schematic is saved into the file resuit.n15 along
with transient results. Start NL5 Circuit Simulator, and open result.n15 to see analog waveforms in
details.

To run simulation with NL5 Circuit Simulator, enable digital part of the schematic, and run transient. To

enable/disable schematic, select part of the schematic, right-click on the selection, select “Enable” or
“Disable” from context menu.

38

LLLLLLLLLLLLLLLLLL

I11. DLL Functions

39

EY NL5DLL User’s Manual

NL5_Ge tError

Prototype:
char* NL5 GetError ()
Parameters:
No parameters
Returns:
Pointer to null-terminated ASCII character string
Description:
Returns text description of last execution error. If no error, returns "OK”.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

40

EY NL5DLL User’s Manual

NL5_GetInfo

Prototype:
char* NL5 GetInfo ()
Parameters:
No parameters
Returns:
Pointer to null-terminated ASCII character string

Description

Returns information about DLL, such as version and date.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

41

EY NL5DLL

User’'s Manual

NL5 GetLicense
Prototype:
int NL5 GetLicense()

Parameters:

No parameters
Returns:
0 : license valid

Description

The function is obsolete, and will be removed from the future versions of NL5 DLL.

42

EY NL5DLL User’s Manual

NL5 Open

Prototype:

int NL5 Open (char* name)
Parameters:

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name
Returns:

>=0 : circuit handle
-1 error

Description

Opens NL5 schematic file “name”.

Returns non-negative circuit handle, or -1 if file not found, cannot be open for any reason, or file and is
not DLL-enabled and contains too many components.

Circuit handle can be used as input parameter ncir for other DLL functions.

If file name does not have path specified, DLL will search for the file in the same directory where NL5
DLL is located.

43

EY NL5DLL User’s Manual

NL5_Close

Prototype:

int NL5 Close(int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description

Close schematic with handle ncir. Schematic information will be removed from DLL, handle ncir
cannot be used anymore.

44

EY NL5DLL

User’'s Manual

NL5_S ave

Prototype:

int NL5 Save (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description

Save schematic with handle ncir into the same file.

Use this function to save schematic back to NL5 schematic file. You might want to save the schematic if
any modification of component parameters were made, IC (Initial Conditions) were saved, or if you want

to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the
schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save

with transient data” checkbox, and save schematic into the file.

45

EY NL5DLL User’s Manual

NL5_S avelAs

Prototype:

int NL5 Save(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name
Returns:

0 :O0K

-1 : error
Description

Save schematic with handle ncir into a new schematic file.

Use this function to save schematic into a new NL5 schematic file. You might want to save the
schematic if any modification of component parameters were made, IC (Initial Conditions) were saved,
or if you want to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the

schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save
with transient data” checkbox, and save schematic into the file.

46

EY NL5DLL User’s Manual

NL5_Ge tValue

Prototype:

int NL5 GetValue(int ncir, char* name, double* v)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
double* v - pointer to value variable
Returns:
0 :OK
-1 : error
Description

Returns double value of component parameter.

name iS component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank
- “On/Off” : 1 for “on”, O for “Of £~

- “High/Low” :1for “High”, O for “Low”

- “Yes/No” ;1 for “Yes”, O for “No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

47

EY NL5DLL User’s Manual

NL5_Se tValue

Prototype:

int NL5 SetValue(int ncir, char* name, double V)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
double v - parameter value
Returns:
0 :O0OK
-1 : error
Description

Sets value of parameter to v.

name iS component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Off” : 1 for “on”, O for “Of£”

- “High/Low” :1for “High”, O for “Low”

- “Yes/No” ;1 for “Yes”, O for “"No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

48

EY NL5DLL User’s Manual

NL5_Ge tText

Prototype:

int NL5 GetText (int ncir, char* name, char* text, int length)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
char* text - pointer to null-terminated ASCII character string with parameter text
int length — max number of characters allowed to return into text, including trailing null
Returns:

>=0 : number of characters returned into text, including trailing null.
-1 @ error

Description
Returns text (parameter value in text format) of component parameter into character string text.

name iS component parameter name in the format <component >.<parameter> (“"R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Size of character string text should be not less than 1ength.
Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

49

EY NL5DLL User’s Manual

NL5_Se tText

Prototype:

int NL5 SetText (int ncir, char* name, char* text)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
char* text - pointer to null-terminated ASCII character string with parameter text
Returns:
0 : OK
-1 : error
Description

Sets text of component parameter name to text.

name IS component parameter name in the format <component >.<parameter> (*R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=".

50

EY NL5DLL User’s Manual

NL5_Ge tParam

Prototype:

int NL5 GetParam(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name
Returns:

>=0 : parameter handle
-1 error

Description

name IS component parameter name in the format <component >.<parameter> (*R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns non-negative handle of component parameter, or -1 if parameter not found.

51

EY NL5DLL User’s Manual

NL5_Ge tParamValue

Prototype:

int NL5 GetParamValue (int ncir, int npar, double* v)

Parameters:
int ncir - circuit handle
int npar - parameter handle
double* v - pointer to the variable
Returns:
0 :OK
-1 error
Description

Returns double value of parameter with handle npar into variable v. Parameter handle npar should
be obtained by function NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank
- “On/Off” : 1 for “on”, O for “O0f£”

- “High/Low” :1for“High”, O for “Low”

- “Yes/No” 11 for “Yes”, O for “No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

52

EY NL5DLL User’s Manual

NL5_Se tParamValue

Prototype:

int NL5 SetParamValue (int ncir, int npar, double V)

Parameters:
int ncir - circuit handle
int npar - parameter handle
double v - parameter value
Returns:
0 :O0K
-1 : error
Description

Sets value of parameter with handle npar to v. Parameter handle npar should be obtained by function
NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Qff” ;1 for “on”, O for “O£f£”

- “High/Low” :1for “High”, O for “Low”

- “Yes/No” ;1 for “Yes”, O for “"No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

53

EY NL5DLL User’s Manual

NL5_Ge tParamText

Prototype:

int NL5 GetParamText (int ncir, int npar, char* text, int length)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text

int length — max number of characters allowed to return into text, including trailing null
Returns:

>=0 : number of characters returned into text, including trailing null.
-1 error

Description

Copies text (parameter value in text format) of component parameter with handle npar into character
string text.

Parameter handle npar should be obtained by function NL5 GetParam.
Size of character string text should be not less than 1ength.
Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

54

EY NL5DLL User’s Manual

NL5_Se tParamText

Prototype:

int NL5 SetParamText (int ncir, int npar, char* text)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text
Returns:

0 : OK

-1 : error
Description

Sets text of component parameter with handle npar to text. Parameter handle npar should be
obtained by function NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=".

55

EY NL5DLL User’s Manual

NL5_Ge tTrace

Prototype:

int NL5 GetTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name
Returns:

>=0 : trace handle
-1 . error

Description

name is the trace name in the format used by NL5 Circuit Simulator. See NL5 Circuit Simulator Manual
for details (User Interface/Data format/Names/Trace).

Returns non-negative trace handle, or -1 if trace name not found.

56

EY NL5DLL User’s Manual

NL5_AddVTrace

Prototype:

int NL5 AddVTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates voltage trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or voltage trace is not supported
by the component.

57

EY NL5DLL User’s Manual

NL5_AddI Trace

Prototype:

int NL5 AddITrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates current trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or current trace is not supported
by the component.

58

EY NL5DLL User’s Manual

NL5_AddPTrace

Prototype:

int NL5 AddPTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates power trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or power trace is not supported by
the component.

59

EY NL5DLL User’s Manual

NL5_AddVarTrace

Prototype:

int NL5 AddVarTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with schematic variable name
Returns:

>=0 : trace handle
-1 . error

Description

Creates trace for schematic variable name.

Returns non-negative trace handle, or -1 if variable name not found.

60

EY NL5DLL User’s Manual

NL5_AddFuncTrace

Prototype:

int NL5 AddFuncTrace (int ncir, char* text)

Parameters:

int ncir - circuit handle

char* text - pointer to null-terminated ASCII character string with function text
Returns:

>=0 : trace handle
-1 : error

Description

Creates trace of function text. See NL5 Circuit Simulator Manual for details on function trace
(Transient Analysis/Transient Data/Traces/Function trace).

Returns non-negative trace handle, or -1 if error occurred.

61

EY NL5DLL User’s Manual

NL5_De1eteTrace

Prototype:
int NL5 DeleteTrace (int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:
0 :OK
-1 error
Description

Deletes traces with trace handle ntrace.

62

EY NL5DLL User’s Manual

NL5 GetInput

Prototype:

int NL5 GetInput (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : input handle
-1 error

Description

name iS component name.
The following component types are supported:

- Label
- Voltage source
- Current source

Returns non-negative input handle or -1 if component not found, or is not supported as an input.
The model of the component will be automatically changed to ‘V” (constant voltage source) or “I”
(constant current source).

63

EY NL5DLL User’s Manual

NL5 SetInputvValue

Prototype:

int NL5 SetInputValue (int ncir, int nin, double V)

Parameters:
int ncir - circuit handle
int nin - input handle
double v - parameter value
Returns:
0 :OK
-1 error
Description

Sets voltage or current of the input with handle npar to v. Input handle nin should be obtained by
function NL5 GetInput.

Returns -1 if input handle nin is not valid.

64

EY NL5DLL User’s Manual

NL5 GetOutput

Prototype:

int NL5 GetOutput (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : input handle
-1 error

Description
name IS component name. Only Label component type is supported.

Returns non-negative output handle or -1 if component not found, or is not supported as an output.
The model of the label will be automatically changed to ‘Label”.

65

EY NL5DLL User’s Manual

NL5 GetOutputValue

Prototype:

int NL5 GetOutputValue (int ncir, int nout, double* v)

Parameters:
int ncir - circuit handle
int nout - output handle
double* v - pointer to the variable
Returns:
0 :OK
-1 error
Description

Sets double value of voltage of output with handle nout into variable v. Output handle nout should be
obtained by function NL5 GetOutput.

Returns -1 if output handle nout is not valid.

66

EY NL5DLL User’s Manual

NL5 SetStep

Prototype:

int NL5 SetStep(int ncir, double step)

Parameters:
int ncir - circuit handle
double step - calculation step
Returns:
0 :OK
-1 : error
Description

Sets maximum calculation step size. If this function was not called, an original calculation step from
schematic file will be used (Transient/Settings/’Calculation step”).

67

EY NL5DLL User’s Manual

NL5_Se tTimeout

Prototype:

int NL5 SetTimeout (int ncir, int t)

Parameters:
int ncir - circuit handle
int t - time-out, seconds
Returns:
0 :OK
-1 : error
Description

Sets maximum time allowed for calculating one simulation step. If this function was not called, a default
time-out value is used (0). If time-out is equal to zero, time-out detection is disabled.

If time-out occurred due to unresolved switching iterations, the error message will indicate a component
which started switching process. Time-out may also occur due to infinite while/do/for loops of C-code.

68

EY NL5DLL

User’'s Manual

NL5_Ge tSimulationTime

Prototype:

int NL5 GetSimulationTime (int ncir, double* t)

Parameters:
int ncir - circuit handle
double* t - pointer to time variable
Returns:
0 :OK
-1 : error
Description

Sets t to the current value of internal simulation time variable.

69

EY NL5DLL

User’'s Manual

NL5_S tart

Prototype:

int NL5 Start (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description

Start simulation.

The function resets internal simulation time variable to O, initializes circuit components, erases
existing simulation data, and calculates initial state of the circuit according to specified Initial Conditions.

When function returns, the simulation data consists of circuit state at t=0.

The function should be called first to start simulation from t=0, prior to calling any simulation functions.
However, calling NL5 Start is not required. It will be executed automatically if any of simulation

functions is called, and simulation has not been performed yet.

The function may return error code if not-DLL enabled schematic contains too many components after

loading subcircuits.

70

EY NL5DLL User’s Manual

NL5_S imulate

Prototype:

int NL5 Simulate(int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds
Returns:

0 :OK

-1 : error
Description

Performs transient simulation at least for requested interval, starting from current
simulation time.

The function increments current simulation time variable by requested interval. Then it
performs simulation until the time of calculated data is equal or greater than new simulation time.

The function does not decrease simulation step in order to stop exactly at the end of requested
interval (new simulation time).), so the time of the last calculated data may exceed new
simulation time.

When next simulation function is called, simulation will be continued with simulation step equal to the
last simulation step.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

71

EY NL5DLL User’s Manual

NL5_Simulate Interval

Prototype:

int NL5 SimulatelInterval (int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds
Returns:

0 :OK

-1 error
Description

Performs transient simulation exactly for requested interval, starting from current
simulation time.

The function increments current simulation time variable by requested interval. Then it
performs simulation until the time of calculated data is equal to the new simulation time.

The function may decrease simulation step in order to stop exactly at the end of requested interval.

When next simulation function is called, simulation step will be restored, and a new “linear range” will be
started.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

72

EY NL5DLL User’s Manual

NL5 SimulateStep

Prototype:

int NL5 SimulateStep (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description
Performs one step of transient simulation.
In some situations (the very beginning of simulation, switching, change of linear range, etc.) more than
one simulation step should be executed without interruption. In this case, the function will execute more
than one simulation step.

When the function returns, simulation time variable is set to the time of last calculated data.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

73

EY NL5DLL

User’'s Manual

NL 5_S avelC

Prototype:

int NL5 SaveIC(int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description

Saves current component states into components’ Initial Conditions.

The function does not save schematic into schematic file.

74

EY NL5DLL User’s Manual

NL5_GetDataSize

Prototype:
int NL5 GetDataSize (int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:

>=0 : data size (number of data points)
-1 : error

Description
Returns non-negative number of data points of the trace with trace handle ntrace or -1 if error occurred.

Please note that NL5 Ver.2 algorithm performs automatic data compression, not storing identical data
points. As a result, data size of different traces obtained during simulation could be different.

75

EY NL5DLL User’s Manual

NL5_Ge tDataAt

Prototype:

int NL5 GetDataAt (int ncir, int ntrace, int n, double* t, double* data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
int n - data point index
double* t - pointer to time variable

double* data pointer to value variable

Returns:
0 :OK
-1 error
Description

Returns time and data of data point with index n. Data index is zero-based.

Returns -1 if index is less than zero, or greater or equal to data size.

Please note that NL5 Ver.2 algorithm performs automatic data compression, not storing identical data
points. As a result, data size of different traces obtained during simulation could be different, and data
points with the same index could be taken at different time.

76

EY NL5DLL User’s Manual

NL5_Ge tLastData

Prototype:

int NL5 GetlLastData (int ncir, int ntrace, double* t, double* data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
double* t - pointer to time variable
double* data — pointer to data variable
Returns:
0 :OK
-1 . error
Description

Sets t and data to the time and data value of the last data point.

Returns -1 if there is no data.

77

EY NL5DLL User’s Manual

NL5_Ge tData

Prototype:

int NL5 GetData(int ncir, int ntrace, double t, double* data)

Parameters:

int ncir - circuit handle

int ntrace - trace handle

double t - time

double* data — pointer to data variable
Returns:

0 :OK

-1 . error
Description

Sets data to the data value at time t. The data is calculated as linear interpolation between two data
points, with time below and above requested time.

Returns -1 if t is less than time of first data point, or greater than the time of last data point.

78

EY NL5DLL User’s Manual

NL5_DeleteOldData

Prototype:

int NL5 DeleteOldData (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description
Deletes transient data with time less than current simulation time. If simulation time falls

between two data points, the last data point prior to simulation time remains in the data. This allows
obtaining interpolated data at simulation time after simulation continues.

79

LLLLLLLLLLLLLLLLLL

V. Attachments

80

EY NL5DLL User’s Manual

END USER LICENSE AGREEMENT

This End-User License Agreement ("EULA", “Agreement”) is a legal agreement between you ("you",
either an individual or a single entity) and Sidelinesoft, LLC (“Sidelinesoft”) for the NL5 Circuit
Simulator and NL5 DLL software ("the Software”, “the Software Product"), NL5 License (“the
Software License”), and accompanying documentation.

Ownership

The Software, any accompanying documentation, and all intellectual property rights therein are owned
by Sidelinesoft. The Software is licensed, not sold. The Software is protected by copyright laws and
treaties, as well as laws and treaties related to other forms of intellectual property. The Licensee's license
to download, use, copy, or change the Software Product is subject to these rights and to all the terms and
conditions of this Agreement.

Acceptance

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY
DOWNLOADING THE SOFTWARE PRODUCT OR BY INSTALLING, USING, OR COPYING
THE SOFTWARE PRODUCT. YOU MUST AGREE TO ALL OF THE TERMS OF THIS
AGREEMENT BEFORE YOU WILL BE ALLOWED TO DOWNLOAD THE SOFTWARE
PRODUCT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, YOU
MUST NOT INSTALL, USE, OR COPY THE SOFTWARE PRODUCT.

License Grant

Sidelinesoft grants you a right to download, install, and use unlimited copies of the Software Product.
Without a Software License, the Software operates as a Demo version, with limited number of
components in the schematic, and possibly some functional and performance limitations. Several types
of Full-Function Software Licenses can be obtained at Software Product website (nl5.sidelinesoft.com).
Terms and conditions of each type of Full-Function Software License are available at the website and
are subject to change without notice.

Restrictions on Reverse Engineering, Decompilation, and Disassembly.
You may not decompile, reverse-engineer, disassemble, or otherwise attempt to derive the source code
for the Software Product.

Restrictions on Alteration

You may not modify the Software Product or create any derivative work of the Software Product or its
accompanying documentation without obtaining permission of Sidelinesoft. Derivative works include
but are not limited to translations. You may not alter any files or libraries in any portion of the Software
Product.

Consent to Use of Data

Sidelinesoft may ask for your permission to collect and use technical information gathered as part of the
product support services provided to you, if any, related to the Software. Sidelinesoft may use this
information solely to improve the Software or to provide customized services to you and will not
disclose this information in a form that personally identifies you.

Disclaimer of Warranties and Limitation of Liability

UNLESS OTHERWISE EXPLICITLY AGREED TO IN WRITING BY SIDELINESOFT,
SIDELINESOFT MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, IN FACT OR IN
LAW, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF

81

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OTHER THAN AS SET
FORTH IN THIS AGREEMENT.

Sidelinesoft makes no warranty that the Software Product will meet your requirements or operate under
your specific conditions of use. Sidelinesoft makes no warranty that operation of the Software Product
will be secure, error free, or free from interruption. YOU MUST DETERMINE WHETHER THE
SOFTWARE PRODUCT SUFFICIENTLY MEETS YOUR REQUIREMENTS FOR SECURITY AND
UNINTERRUPTABILITY. YOU BEAR SOLE RESPONSIBILITY AND ALL LIABILITY FOR ANY
LOSS INCURRED DUE TO FAILURE OF THE SOFTWARE PRODUCT TO MEET YOUR
REQUIREMENTS. UNDER NO CIRCUMSTANCES SHALL SIDELINESOFT BE LIABLE TO YOU
OR ANY OTHER PARTY FOR INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL,
PUNITIVE, OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOST REVENUES OR
PROFITS OR LOSS OF BUSINESS) RESULTING FROM THIS AGREEMENT, OR FROM THE
PERFORMANCE, INSTALLATION, USE OR INABILITY TO USE THE SOFTWARE PRODUCT,
WHETHER DUE TO A BREACH OF CONTRACT, BREACH OF WARRANTY, OR THE
NEGLIGENCE OF SIDELINESOFT OR ANY OTHER PARTY, EVEN IF SIDELINESOFT IS
ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT
THAT THE APPLICABLE JURISDICTION LIMITS SIDELINESOFT'S ABILITY TO DISCLAIM
ANY IMPLIED WARRANTIES, THIS DISCLAIMER SHALL BE EFFECTIVE TO THE
MAXIMUM EXTENT PERMITTED.

Limitation of Remedies and Damages

Your remedy for a breach of this Agreement or of any warranty included in this Agreement is the
correction or replacement of the Software Product. Selection of whether to correct or replace shall be
solely at the discretion of Sidelinesoft. Any claim must be made within the applicable warranty period.
All warranties cover only defects arising under normal use and do not include malfunctions or failure
resulting from misuse, abuse, neglect, alteration, improper installation, or a virus. All limited warranties
on the Software Product are granted only to you and are non-transferable. You agree to indemnify and
hold Sidelinesoft harmless from all claims, judgments, liabilities, expenses, or costs arising from your
breach of this Agreement and/or acts or omissions.

Severability

If any provision of this Agreement shall be held to be invalid or unenforceable, the remainder of this
Agreement shall remain in full force and effect. To the extent any express or implied restrictions are not
permitted by applicable laws, these express or implied restrictions shall remain in force and effect to the
maximum extent permitted by such applicable laws.

Termination

This Agreement is effective until terminated. Without prejudice to any other rights, Sidelinesoft may
terminate this Agreement if you fail to comply with the terms and conditions of this Agreement. In such
event, you must destroy all copies of the Software License.

Governing Law, Dispute Resolution
This Agreement is governed by the laws of the State of Colorado, U.S.A., without regard to its choice of
law principles to the contrary.

Contact Information.
Any inquiries regarding this Agreement or the Software may be addressed to Sidelinesoft at the
Software Product website (nl5.sidelinesoft.com).

82

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

The end

83

	I. Introduction
	What is NL5 DLL
	Version
	Files
	License

	II. Using DLL
	Functions
	Function parameters
	Function result
	Handles

	Using DLL
	Error message
	DLL information
	Schematic
	Parameters
	Traces
	Co-simulation
	Inputs/Outputs
	Simulation
	Simulation data

	Using DLL with MATLAB
	Using DLL with SystemVerilog
	Files
	Using DLL
	Using DLL with C-code “wrapper”

	Running co-simulation demo with Xilinx Vivado
	Creating demo project
	Creating library file
	Configuring and running demo
	Demo circuit

	III. DLL Functions
	NL5_GetError
	NL5_GetInfo
	NL5_GetLicense
	NL5_Open
	NL5_Close
	NL5_Save
	NL5_SaveAs
	NL5_GetValue
	NL5_SetValue
	NL5_GetText
	NL5_SetText
	NL5_GetParam
	NL5_GetParamValue
	NL5_SetParamValue
	NL5_GetParamText
	NL5_SetParamText
	NL5_GetTrace
	NL5_AddVTrace
	NL5_AddITrace
	NL5_AddPTrace
	NL5_AddVarTrace
	NL5_AddFuncTrace
	NL5_DeleteTrace
	NL5_GetInput
	NL5_SetInputValue
	NL5_GetOutput
	NL5_GetOutputValue
	NL5_SetStep
	NL5_SetTimeout
	NL5_GetSimulationTime
	NL5_Start
	NL5_Simulate
	NL5_SimulateInterval
	NL5_SimulateStep
	NL5_SaveIC
	NL5_GetDataSize
	NL5_GetDataAt
	NL5_GetLastData
	NL5_GetData
	NL5_DeleteOldData

	IV. Attachments
	END USER LICENSE AGREEMENT

