NL Circuit Simulator User's Manual

Ver.1

VERSION

NL Circuit Simulator User's Manual version 1, 04/10/2025 The latest versions of NL documents can be found at <u>sidelinesoft.com/nl5</u>.

LIMITED LIABILITY

NL, together will all accompanying materials, is provided on a "as is" basis, without warranty of any kind. The author makes no warranty, either expressed, implied, or stationary, including but not limited to any implied warranties of merchantability or fitness for any purpose. In no event will the author be liable to anyone for direct, incidental or consequential damages or losses arising from use or inability to use NL.

COPYRIGHTS

© 2025, A.Smirnov. The program and User's Manual are copyrighted. No portion of this Manual can be translated or reproduced for commercial purpose without the express written permission from the copyright holder. On publication of results obtained from use of NL citation is appreciated.

Microsoft, Windows, and Microsoft Visual C++ are registered trademarks of Microsoft Corporation.

Table of Contents

I. Introduction	
What is NL	5
Install and run NL	5
NL file types	6
NL Help	
NL preferences	7
Create and Simulate Your First Schematic	
II. User Interface	
Application	
Navigation bar	
Settings window	
Context menus	
Showtowta	14
Shortcuts	
Mouse	
Data format	
Numbers	
Names	
Europerators	
Functions	
	1)
III. Schematic	
Edit schematic	
Cursor	
Wire	
Ground	
Connection	
Component	
Label	
Zoom and scrolling	
General commands and shortcuts	
Components	
Working with special component types and models	
PWL model	
List model (voltage and current source)	
List model (switch and logic generator)	

Table model	
Schematic variables	
Schematic settings	
Check schematic	
IV. Transient	
Algorithm	
Running transient	
Transient window	
Transient settings Simulation	
Format traces Screen	
V. AC analysis	
Algorithm	
Running AC analysis	
AC window	
AC settings	
Simulation	
Add traces	
Format traces	
Format traces	

I. Introduction

What is NL

NL is a **free** introductory version of **NL5 Circuit Simulator**. It uses the same simulation algorithm as **NL5**, same component types and models, and it can perform simulation with unlimited number of components. However, its user interface is very simple and limited, and it does not support most of the features, tools, and unique functionality available in **NL5**. It also supports just a small number of component types and models offered by **NL5**.

NL can be used to learn how schematic is entered and edited, how component parameters are specified; then you can perform simulation and see results in a very simple format. You can continue using **NL** for simple projects that do not require special components, extensive analysis and tools: this should be quite adequate tool for beginners, students, and hobbyists.

For professionals who need special components and features, extensive analysis capabilities and tools, switching to full-functional **NL5** is highly recommended. After starting with simple **NL**, such a transition can be made easily.

NL and NL5 schematic files have the same format, so that any *.nl5 schematic file can be opened and simulated by both NL and NL5. However, due to limited functionality NL may remove or replace schematic settings which are not supported. For example, common changes in NL5 schematic made by NL will be:

- Components of unsupported types removed.
- Unsupported models replaced by another supported model.
- Formulas in component parameters replaced by values.
- Advanced formatting, drawings and text in schematic/transient/AC windows removed.
- Traces of non-supported types removed or replaced by V trace.
- Digital and Bus transient trace modes replaced by Analog mode.
- Transient and AC data included into the file removed.
- All Transient and AC Tools configuration removed.
- And more...

Please note that all those changes (except component/model removal and modification) will not affect simulation results.

Install and run NL

The only file required for NL operation is executable nl.exe. You can place nl5.exe into any directory. There could be several copies of nl.exe in different directories on one computer.

It is recommended to run nl.exe with administrator privileges, to have full access to the **Registry**. To set up administrator mode in Windows 10 and later, right-click on the NL icon, select **Properties**, select **Compatibility** tab, check **Run this program as an administrator**.

NL file types

The following file extensions are used by NL:

Extension	Description
nl5	Schematic
nl5~	Schematic backup
nlp	Preferences

Information about NL file types and icons is stored in the registry. Please run NL as administrator to be able to modify that information.

Please note that NL and NL5 schematic files are compatible and can be used by both tools. However, if you open NL5 file with NL and then save it, some NL5-specific information can be lost.

NL Help

NL is using the same help file as NL5: nl5.chm ². The help file is not required, but if used, it should be placed in the same directory as nl.exe. The file contains only reference information, such as description of operators, functions, commands, components, and models. For detailed information refer to the NL User's Manual and NL5 User's Reference.

Please note that some information in the Help file is for NL5 only and does not apply to NL.

For context Help, press **F1**, or click **Help** button , which is available in some windows.

If you cannot see content of Help file, most likely the file is blocked. To unblock:

- Locate nl5.chm file in the NL directory.
- Right-click the file, then click **Properties.**
- Select General tab.
- Click Unblock.
- If **Unblock** button is not visible, delete nl5.chm file from the directory, copy it to NL directory again from nl.zip download package, and repeat this procedure.

NL preferences

Preferences are stored in the file nl.nlp, typically located in the same directory as nl.exe. NL reads preferences from the file at start-up and saves into the file every time **Apply** or **OK** button in the **Preferences** window, and on exit.

Please note that if nl.exe is located anywhere inside C:\Program Files directory, it may not be able to save preferences file nl.nlp due to Windows writing restrictions. In this case, the preferences file will be saved in the C:\Users\user_name\Documents\nl5 directory (or similar directory, depending on specific OS).

To open **Preferences** window click *in the Main menu, or in some pop-up context menus.*

Create and Simulate Your First Schematic

To create a new schematic, click **New** toolbar button in the main NL window.

Enter schematic.

Entering and editing can be done using keyboard keys, mouse, or both. Here are step-by-step instructions on how to enter a simple schematic using keyboard.

A red cursor is located in the middle of the screen and is pointing to the right.

- Press **Space** to switch to drawing mode.
- Press Arrow Down several times to draw short wire downward.
- Press V key and then press Enter to place a voltage source.
- Press G key to place a ground. Now cursor is switched back to selection mode.
- Press Arrow Up several times to move cursor back to the starting point.
- Press Arrow Right to change direction; then press Space to switch to drawing mode.
- Press Arrow Right several times to draw a short horizontal wire.
- Press **R** key and then press **Enter** to place a resistor.
- Press Arrow Right several times again; then press Arrow Down several times.
- Press C key and then press Enter to place a capacitor.
- Press **G** key to place a ground. Schematic is ready.

Edit component parameters.

- Double click on the voltage source **V1** on the schematic. A **Components** window will show up.
- Click on **V1** in the components list. Click right to the model name (top-right), select **Pulse**.
- Click on the resistor **R1**, enter 1 in the parameter field **R**.
- Click on the capacitor C1, enter 1 in the parameter field C.

🕀 nl	1 - Comp	onents				×
ad 🗣	ы <u>Ж</u> .	T B	Х	7 S		🛱 1l 🛱 📽 🔟 🔳 🔗
Name	Value			V1		Pulse 🔻
C1	1			V1	V	10
R1	1			VO	V	0
V1	Pulse			N	· ·	-
				Period	S	1
				Width	S	500e-3
				Slope		Linear
				Rise	S	0
				Fall	S	0
				Delay	S	0

View transient settings.

Click **Transient settings** in the schematic window toolbar, select **Simulation** to go to **Settings** window, **Simulation** tab. You do not need to change anything here, but you can, if you wish.

Add transient traces.

Select Add traces tab , select V in the left window, then double-click on V1 and C1 in the components list. Voltage traces will be added to the trace list.

Run transient.

Click **Start transient** ➡ to run simulation:

View and edit AC settings.

Click AC settings in the schematic window toolbar, select Simulation to go to Settings window, Simulation tab. Click on the AC source drop-down list, select V1.

Add AC traces.

Select **Add traces** tab , select **V** in the left window, then double-click on **C1** in the components list. AC voltage trace will be added to the traces list.

Tnl1 - AC settings - Simulation	×	👚 nl1 - AC settings - Add traces	×
• • • • • • • • • •		⊡	
👕 🔶 🖾 🕀	Check all <u>Select all</u>	👕 🔸 🕅 🕀	Check all <u>Select all</u>
N V1 ✓ AC source		🕂 Add new trace	V(C1)
Frequency :			
1e-3 From Hz			
1e+3 To, Hz		VSWR Open Joop	
500 V Points		openioop	
Log V Scale			
Calculate DC operating point			
T Advanced settings Apply	Check traces to be shown on the graph	Apply	Check traces to be shown on the graph

Run AC.

Click **Start AC** is to run AC simulation:

II. User Interface

Application

NL uses standard Windows multiple-document interface (**MDI**). All schematic-related windows (Schematic, Transient, AC) are created in "MDI child" mode, and are located inside the "main" window:

Navigation bar

Navigation bar shows currently opened documents (schematics), with highlighted active document and window:

🗋 🚔 🖪	▲ 🕅 🛪 🕐 < Ic_line 🕅 🔍 × 🔤 nl1 🕅 🕂 × 🔤 nl4 🕅 ×
	Active document Schematic window Transient window AC window (active)

- Click on the document name to activate the document.
- Click on the window icon to activate document and window.
- Click \times to close schematic.

Settings window

👚 nl1 - Transient sett	ings - Simulation		×
Image: Control of the second seco	Start, s Screen, s Step, s	Check all	.Select al.
T Advanced setting	s Apply	Check traces to graph	o be shown on the

Settings window shows settings for **Transient** and **AC** simulation and window window. Settings window always shows information for active document (schematic). The name of active schematic is shown in the header of Settings window.

When **Transient** or **AC** window is activated, **Setting window** will automatically show settings for that window. You can also select desired settings clicking Transient or AC settings button (top left):

1	R_CCR_PWL - Settings - Transient					
0	0 (2	= >	< -	++	
T	•	÷	諁			
	0				Start, s	
	60				Screen, s	
	1e	-3			Step, s	

If some parameters in **Settings window** are modified, their background color will change to light-yellow:

Press Enter or click Apply to accept changes.

Settings window can be always opened.

Context menus

In some places, mouse right-click will open context pop-up menu window. The content of the context menu depends on current window, selection, position of mouse pointer, etc.

Shortcuts

- F1 Help (context help on a specific window, selected component, C function, etc.).
- F2 show Schematic window.
- **F3** show Components window.
- F4 show Variables window.
- **F5** show Transient window.
- **F6** start transient.
- **F7** continue transient.
- **F8** show AC window.
- **F9** start AC analysis.
- **F10** show Settings window.

Mouse

Most of mouse and mouse wheel operations are similar in Schematic, Transient, and AC windows.

Some options of mouse wheel operation can be changed in **Preferences/Document/Schematic/Mouse**, and **Preferences/Document/Graphs/Mouse**.

Data format

Data format used in NL mostly complies with common engineering and scientific practice.

Numbers

Boolean number can be entered as false or true (case-insensitive):

```
bool i = true;
bool retvalue = FALSE;
```

When converted to other types, true is considered as 1, false as 0. When other types are converted to bool, non-zero value is considered as true, zero value as false.

Integer (int, int64) number can be entered in decimal, binary, octal, or hexadecimal formats.

```
Binary: use 'Ob' or 'OB' prefix, then use digits 0 and 1: 0b11111111, 0B10101010, 0b10
```

Octal: start number with prefix 0 (zero), then use digits 0...7: 0377, 0123456

Hexadecimal: use '0x' or '0X' prefix. Then use 0...9, and capital or low-case A, B, C, D, E, F: 0xFF, 0X10aa, 0x10000

If a value of a number exceeds 32-bit range, it will be automatically converted to int64 type. Use i64 suffix to explicitly define 64-bit integer:

0i64, 0xffffffi64

Floating point (float, double) number can use exponential multipliers **E** or **e**, or **case-sensitive** letter multipliers:

Letter	Multiplier
Т	10 ¹²
G	10 ⁹
М	10 ⁶
k, K	10 ³
m	10-3
u	10 ⁻⁶
n	10-9
p	10 ⁻¹²
f	10-15

For example:

1.3e+3, 47E-9, 100k, 0.33u

Letter multiplier can be used instead of a decimal point. Zero before decimal point or letter multiplier can be omitted:

1k3, .47, n47

Infinite value is denoted by:

inf

Complex number consists of real and imaginary parts of floating point type. Imaginary part of a complex number has **lower case** letter 'j' at the end of a number. Letter 'j' cannot be used alone, only as a suffix:

```
50+45j
1+1e-3j = 1+.001j
30j
1+j : wrong! Correct format: 1+1j
```

The following predefined constants (case-insensitive) can be used:

```
PI = Pi = pi = 3.14159265359
RAD = Rad = rad = 180/pi = 57.2957795131
LOW = Low = low : low logical level
HIGH = High = high : high logical level
```

Constant RAD can be used to convert degrees to radians and radians to degrees:

degrees = radians * RAD
radians = degrees / RAD

where degrees is value in degrees, and radians is value in radians.

All numerical component parameters, and most of other parameters in NL5 are floating point (double). Those parameters can be entered in any format, however after that they are automatically converted and stored in the floating point format.

When floating point number is displayed, an engineering notation, with exponential multiplier and power of ten to be multiple of three, is used:

Entered	Displayed
1k3	1.3e+3
47e-8	470e-9
5600000	5.6e+6

Names

Component. When a new component is created, it is assigned a default name: 'letter' plus number:

R1 V2

To access component's parameter in the function, use component name followed by dot '.' and parameter name:

R1.R V2.slope C123.IC

If parameter name is not specified, a first parameter of the component will be used:

R1 = R1.RC2 = C2.C

If current component model does not have parameters, a component model name will be used:

A1 = Amperemeter

Schematic variable. Schematic variable (a variable defined in the **Variables window**) name has the same format as a component, except it does not have parameters. For example:

Freq X1.var

Trace. The basic name of transient or AC trace consists of the letter specifying type of the trace (\forall, \exists, P) , followed by component's name in parentheses:

V(R1) I(C2) P(L3)

Operators

NL supports the following arithmetic and logical operators:

	++		+	-	*	/	00
	!	~	<<	>>	&	^	
	<	<=	>	>=	==	! =	
	& &		?:				
	+=	-=	*=	/=	%=		
	۵=	^=	=	<<=	>>=		
and type-	casting operat	ors:					
	(bool)	(int)	(int64)	(float)	(double)	(con	nplex)

See NL5 User's Reference for details.

Functions

NL offers many standard and NL5-specific functions. The functions can be used in **Function** model of some components.

For the convenience of users, there may be several names used for the same function (for example log10 and lg), so that the user can use the name he/she is more comfortable with. The following functions are available:

sin	sqrt	mag, abs	par	sum
COS	sqr	phase	random, rand	mean
tan, tg	sq	re	gauss	max
asin	pow	im	limit, lim	min
acos	pwr	sign	islow	bool
atan	exp	round	ishigh	int
atan2	ln, log	floor	db	int64
	lg, log10	ceil		float
	lb, log2			double
				complex

Please note that argument of functions **sin**, **cos**, **tan**, **tg** is in radians, not degrees. Similarly, functions **asin**, **acos**, **atan**, **phase** return radians, not degrees.

See NL5 User's Reference for details.

Expressions

Expression may consist of:

- Numbers.
- Predefined constants.
- Names of components, parameters and variables.
- Operators.
- Functions.
- Parentheses with unlimited nesting level.

For example:

```
2*2
2<<3
sin(2*PI*f) // "f" is schematic variable.
max(R1,R2,R3)
1/((R1+R2)*C1)
```

Expression can be used instead of number in most entry fields in the dialog boxes, and for some component parameters. When **Enter** key is pressed, or **OK** or **Apply** button (if exists) is clicked, the expression is immediately evaluated and replaced with the numerical value.

Please note that division of two integer values will produce double value, and a result will not be rounded. This is similar to how calculations are performed in calculators, Excel spreadsheets, etc. For example:

1/100 = 0.015/2 = 2.5

III. Schematic

Edit schematic

Cursor

- **Double-click** set cursor at that point and center it on the screen.
- Left, Up, Right, Down change cursor direction, move cursor.
- Click on the cursor close to the cursor corner to change cursor direction.
- Home center cursor on the screen.

Wire

- Press **Space** or click **Wire** to switch to **Wire** mode.
- Click and drag to draw wire.
- Left, Up, Right, Down change cursor direction, draw wire.
- Press and hold Ctrl to draw diagonal wire.
- Press **Space** or **ESC** to switch back to **Selection** mode.

Ground

- Press **G** or click $\stackrel{\perp}{\checkmark}$ on the **Components bar**.

Connection

- Press '.' (dot) or click + on the Components bar.

Three wires coming to one point are connected automatically: a connection point will be automatically added during schematic check. Two crossing wires are not connected by default and should be connected manually. All unnecessary connection points will be automatically removed during schematic check. **Warning**: diagonal wire cannot be connected to the wires it is crossing.

Component

- Select tab with component letter on the **Components bar**, click on the component. **OR**
- Press component letter key (for example '**R**') one or more time to select required component.
- Move component by keyboard/mouse, rotate, mirror, flip, select view if needed.
- **Right-click** on the component to see context menu, or use toolbar buttons or shortcuts to do the following:
 - for **Ctrl-L** rotate component left.
 - **D** or **Ctrl-R** rotate component right.
 - or **Ctrl-M** mirror component.
 - or **Ctrl-F** flip component.
 - t or +/- key show next component view (if applicable).
- Press **Enter** to place component or press **Del** or **ESC** to cancel.

When component is placed, click on the component to select it, then use the following ways to access component editing commands:

- toolbar buttons,
- keyboard shortcuts,
- Main menu/Edit, Main menu/Edit/Selection,
- **Right-click** on the component to see pop-up context menu.

The following component editing commands are available:

- set component at 45 degrees (available for some R, L, C, S, and D components).
- or **Ctrl-T** rotate attribute of selected component.
- \uparrow or +/- key show next component view (if applicable).

- $\mathbf{\underline{\mathcal{L}}}$ or **Ctrl-L** rotate component left.
- **D** or **Ctrl-R** rotate component right.
- or **Ctrl-M** mirror component.
- 🛛 🖆 or **Ctrl-F** flip component.
- **Double-click** on the component to edit component parameters in the **Components window**. Then, if you finish editing parameters by pressing **Enter** or **Esc**, you will switch back to the schematic.

When component is placed above existing wire, a piece of the wire underneath the component is automatically removed, so that no editing of the wire is required. Similarly, when component is moved/copied above existing wire, a piece of the wire underneath the component will be automatically removed:

Label

- Press Enter or click $\stackrel{abc}{\circledast}$ on the Components bar.
- For new label, enter label **Name** and **Description** (optional), click **OK**.
- For existing label, enter label **Name** or select from the list of existing labels, click **OK**.
- **Double-click** to edit label parameters in the **Components window**.

Zoom and scrolling

- Click to switch to Scrolling mode, then click and drag to scroll the screen. **OR**
- Press and hold **Shift**, then click and drag to scroll the screen.
- Shift-Left, Shift-Up, Shift-Right, Shift-Down scroll the screen.
- Ctrl-mouse wheel scroll horizontally.
- Shift- mouse wheel scroll vertically.
- • or **PgUp -** zoom-in.
- Q or **PgDo** zoom out.
- **E** or **Ctrl-Home** fit all schematic to the screen.
- **Shift-Home** fit selection to the screen.
- Mouse-wheel zoom in/out.

Selection

- Click on the schematic element to select.
- Point on empty space, **click** and drag to select a block (rectangle).
- Press and hold **Ctrl** while selecting add to existing selection.
- **Ctrl-A** select all schematic.
- **Right-click/Select net -** selects all wires connected to the selection either directly, or through labels (including other sheets).
- Click on empty space or press Esc to unselect (press Esc twice to unselect a block).
- Left, Up, Right, Down move selected block.
- Click and drag to move element or selection.
- Click and drag to move attribute of selected component.
- **Shift** + **Click** and drag to move element or selection with **rubber bands**.
- Ctrl + Click and drag to copy element or selection.
- Ctrl + Shift + Click and drag to copy element or selection with rubber bands.
- Right-click/Disable or Ctrl-D to disable selection.
- **Right-click/Enable** or **Ctrl-E** to enable selection.

Disabled schematic elements are shown in "disabled" color and are not used for simulation. Disabling elements allows temporarily exclude elements from simulation without deleting.

- \square or **Ctrl-C** copy selection.
- $\overset{\bigstar}{\overset{}}$ or **Ctrl-X** cut selection.
- 🛍 or **Ctrl-V** paste selection.
- X or **Del** delete selection.
- **Ctrl-L** rotate selection left.
- **D** or **Ctrl-R** rotate selection right.
- or **Ctrl-M** mirror selection.
- 💁 or **Ctrl-F** flip selection.
- 1 next view of selected component.

Press +/- to go through all applicable combinations of **View**, **Mirror**, and **Flip**.

General commands and shortcuts

- Press **Tab** to change attributes display for all components.
- **Right-click** to open context pop-up menu.
- or \mathbf{Ctrl} -Undo.
- ^C or **Ctrl-Y** Redo.

Components

All available components are shown in the Components bar:

Each **component** has a letter associated with it. When a new component is placed, its **name** consists of a letter and number.

Label is a special type of component: there can be many labels with the same name in the schematic. All labels with the same name are electrically connected.

Labels can be used:

- To connect different points of the schematic without wire.
- As a simulation probe (**V trace**).
- As a voltage source.

Symbol. Most components have just one symbol associated with it, which cannot be changed. Some components may have several **views**, when the symbol is modified depending on different pin locations (for example, location of positive/negative input pins), and different functionality (for example, inversion of logical signals). For logical gates, changing **view** may also be used to change gate logical function (AND, OR, XOR).

Select component and click \uparrow to change a view, or press '+'/'-' keys to go through all applicable combinations of view \uparrow , mirror \checkmark , and flip \clubsuit .

Also, some components may have different symbols for different component **model** or component parameters. For example, symbol of the **Function** component indicates functionality of a selected model, and symbol of the **Switch** component indicates switch position in non-active state:

Model. Component **model** defines specific component functionality. For example, voltage source models include **Pulse**, **Sin**, **Step**, **File**, and more. Select component model in the drop-down list above parameters.

Parameters. Component parameters may be of different type: floating point, text, etc. Floating point parameter can be entered as an expression, for example:

R1.R*2.5

Such an expression will be immediately calculated and replaced by a resulting value.

Function. Some component parameters represent a **function**. Function is an expression which is recalculated at every transient or AC calculation step. Function can use the following variables:

t – current transient time, s. f – current AC frequency, Hz. w – angular AC frequency, $w = 2\pi f$. **s** or p – Laplace parameter, $s = p = j*2\pi f$. x, y – input signals for **Function** model. V(name) – voltage on the component name. V trace should be available for the component. *l(name)* – current on the component *name*. I trace should be available for the component. **P(name)** – power on the component **name**. P trace should be available for the component.

For example:

```
sin(t*1000)*(1+cos(t*10))
(t%2>1)?1:-1
sq(V(r1))/r1
1/(1+s*R1*C1)
```

Blank parameter. Some parameters of floating point type may be blank (empty), which means the value is not defined. For example, blank IC (initial condition) parameter of capacitor means that its initial voltage at t=0 is not defined and will be determined during DC operating point calculation.

Logical levels and threshold for all components are defined in the **Schematic settings** window:

nl1 - Settings			×
Location:			
Created: 4/7/2025 1:08	8:15 PM		
Modified: 4/7/2025 1:08	8:15 PM		
Logical levels			
0	Low, V		
5	High, V		
2.5	Threshold, V		
	ОК	Cancel	Apply

Attributes. There are 2 attributes of the component that can be displayed on the schematic: Name and Value.

Name is automatically assigned to the component when it is placed.

Value content depends on the component type. By default, it is the first parameter of the model, model name, or empty.

Press Tab to toggle attributes display mode for all components in the schematic:

- Name only
- Name and Value
- Value only
- No attributes

To move attributes, select component first, then click and drag the attribute.

Component model and parameters can be selected and edited in the Components windows:

🕅 rc - C	Componer	nts					Х
db 🔁	ЖΫ	\mathbb{R}	X	Y 📀		🛱 14 🛱 📽 🔟 🔳	8
Name	Value			V1		Pulse	-
C1	1			V1	V	10	
R1	1			10	· 17	0	
V1 (AC)	Pulse			VU	Y	0	
out				Period	S	400e-3	
				Width	s	200e-3	
				Slope		Linear	-
				Rise	s	0	
				Fall	s	0	
				Delay	s	0	

Double-click on the component or press **F3** to open or switch to the **Components window**. If **double-click** on the component in the schematic window was used, edit parameter and press **Enter** to switch back to schematic window.

Operations available for selected component are available on the toolbar.

Working with special component types and models

PWL model

PWL (PieceWise Linear) model describes non-linear characteristic of the component with piecewise linear approximation.

Please note that **pwl** parameter of the **PWL** model typically specifies PWC (PieceWise Constant) function, which represents sensitivity (derivative) of PWL function. For instance, **pwl** parameter of a resistor specifies R(V), which is PWC function, while resistor I(V) characteristic is PWL function. The parameter is still called **pwl** (not **pwc**) for historical reasons.

The following table shows PWC (**pwl** parameter) and corresponding PWL functions for NL5 components:

Component	PWC	PWL
Resistor, diode, zener	R(V)	I(V)
Resistor	R(I)	V(I)
Capacitor	C(V)	Q(V)
Inductor	L(I)	H(I)
Voltage controlled voltage source, OpAmp	K(V)	V(V)
Current controlled voltage source	K(I)	V(I)
Voltage controlled current source	K(V)	I(V)
Current controlled current source	K(I)	I(I)

For voltage/current controlled linear components (R, C, L, and amplifier) **pwl** parameter is also PWC function, describing change of component main parameter (R, C, L, K) with control signal:

PWL model of a resistor is described here as an example.

pwl parameter is a comma-separated string, describing PWC function:

R0,V1,R1,V2,R2,...,VN,RN

where:

R0 is resistance while voltage across the resistor is less than V1.

R1 is resistance while voltage across the resistor is between V1 and V2.

•••

RN is resistance while voltage across the resistor is greater than VN.

Values $v_{1...v_N}$ should be given in ascending order. Resulting PWL characteristic is calculated automatically, and always goes through the origin (0,0). Please note that only numbers can be used in **pwl** parameter: formulas are not allowed.

PWC function can be symmetrical or non-symmetrical. **Symmetrical** function is defined only in the interval from zero to plus infinity; the negative part of PWC function is symmetrical to positive one:

pwl = 1, 1, 2, 3, 5

Non-symmetrical function is defined from minus to plus infinity. One of the argument points must be **zero**: it serves as an indicator of non-symmetrical characteristic:

pwl = .5, -1, 1, 0, 1, 1, 2, 3, 5

To edit **pwl** parameter, select the parameter and click 🔟 to open **PWL** window:

Right-click on the graphs area to see context menu with relevant commands. The following tabs are available:

Table . Edit PWL data in the table.

 \rightarrow in the first column indicates selected row.

Select cell and edit the number: **From** value is updated automatically.

- $\underline{\mathbf{A}}$ symmetrical PWC. The first **From** value will be **zero**.
- **b** non-symmetrical PWC. The first **From** value will be **-inf**.

- split selected row.

- remove selected row.

× - clear all data.

✓ or **Enter** - refresh graphs.

List model (voltage and current source)

List model describes piecewise linear voltage or current source.

List parameter is a comma-separated string with time/value pairs:

T1,V1,T2,V2,...,TN,VN

Signal value between specified points is linearly interpolated. Signal value before T1 is V1, signal value after TN is VN. Values T1...TN should be given in ascending order. Although the signal is defined on the interval T1...TN, it can be repeated continuously, or delayed by setting component parameters **Delay** and **Cycle**. Please note that only numbers can be used in **List** parameter: formulas are not allowed.

Edit **List** parameter manually, or click **l** to open **List** window:

Enter data in the table as comma-separated time/value pairs. The data will be automatically sorted in ascending order when refreshed.

User's Manual

List model (switch and logic generator)

List model describes switching sequence of Switch component, and logical signal of Logic Generator component.

List parameter is a comma-separated string with time/value pairs:

T1, S1, T2, S2, ..., TN, SN

where Ti, Si pair defines state of the signal at specified time:

- Positive value corresponds to **On** state of the switch, or **High** state of the logic generator.
- Zero or negative value corresponds to **Off** state of the switch, or **Low** state of the logic generator.

Signal state before T1 is S1, signal state after TN is SN. Values T1...TN should be given in ascending order. Although the signal is defined on the interval T1...TN, it can be repeated continuously, or delayed by setting component parameters **Delay** and **Cycle**. Please note that only numbers can be used in **List** parameter: formulas are not allowed.

Edit **List** parameter manually, or click **l** to open **List** window:

Enter data in the table as comma-separated time/value pairs. The data will be automatically sorted in ascending order when refreshed.

Table model

Table model describes look-up table of the Function component.

Table parameter is a comma-separated string with input/output pairs:

X1,Y1,X2,Y2,...,XN,YN

where xi, yi pair defines input value x and output value y. Output value between specified points is linearly interpolated. Output value below x1 is linearly extrapolated using x1...x2 interval data, output value above xN is linearly extrapolated using x(N-1)...xN interval data. Values x1...xN should be given in ascending order. Please note that only numbers can be used in **Table** parameter: formulas are not allowed.

To edit **Table** parameter, select the parameter and click it to open **Table** window:

Enter data in the table as comma-separated input/output pairs. The data will be automatically sorted in ascending order when refreshed.

User's Manual

Schematic variables

Schematic variable is a floating point variable which belongs to the schematic. The variable and its value can be defined in the **Variables window**:

🕱 nl1 - Variables 🛛 🗙						
💠 🗕 🗙						
T1	1e-3					
Var1	12					
Var2 3.567						

Variables can be used in expressions, for example when defining component parameters:

R1.R = Var1*2

Schematic settings

nl1 - Settings
Location:
Created: 4/7/2025 1:08:15 PM
Modified: 4/7/2025 1:08:15 PM
Logical levels
0 Low, V
5 High, V
2.5 Threshold, V

Specify logical levels and threshold for all components in the schematic.

Check schematic

Check schematic \checkmark command performs extensive check of the schematic for potential problems, and reports results in the window:

💙 nl1 - Cheo	ck schematic	Х
9 D1,R1 9 C1 9	< Click here to check again > Overlapping components Not connected Possibly floating schematic (no ground)	

Also, the check function removes unnecessary connection points and adds connection points where needed (three wires).

Click on the row to select (highlight) a schematic element(s) for which the problem was detected.

Go to **Preferences** , **Warnings** tab to select/unselect reported issues. **Right-click** to access check-related commands in the pop-up context menu.

Schematic check is automatically performed at **Transient** and **AC** simulation start. The problems reported by the function do not prevent running simulation and typically do not affect simulation results. However, they could indicate not accurate schematic design and should be fixed if possible.

IV. Transient

Algorithm

NL and NL5 perform simulation with ideal and piecewise linear (PWL) components. For instance, an ideal diode is either short circuit (zero resistance), or open circuit (infinite resistance), so that its PWL representation consists of just two linear segments. As long as all of the components are staying within their current segment, the circuit is described by the system of linear differential equations. The system is modified only at the moments when at least one component changes its linear segment.

Start. When simulation starts at t=0, a **Direct Current (DC) operating point** is calculated first. Some of the components may have specified Initial Condition (IC): these ICs will be used during DC operating point calculation. If circuit has more than one steady state, it can be set to a desired state by defining proper ICs. After DC operating point is found, simulation continues as a sequence of **linear segment** simulations, with **switching** between them.

Linear segment. In the linear segment, the circuit is described by the system of linear differential equations, which is solved by Trapezoidal integration method. The method provides sufficient accuracy with good robustness and calculation speed. During linear segment simulation, the algorithm is performing "switching point detection": checking conditions on all components that may change their state or linear segment.

Switching. When switching point is detected, the current linear range ends, **switching** algorithm performs instantaneous switching, and a new linear segment starts. Switching algorithm can be optimized for specific circuit by selecting from several options at **Transient settings/Advanced settings**.

Instantaneous switching of ideal components may produce infinite voltage or current pulses. For example, when capacitor is connected to voltage source through ideal switch, an infinitely short current pulse with infinite amplitude may occur. The area (integral over time) of such pulse is limited and is equal to the total charge coming to or out of the capacitor during switching. Similar situations may occur when current through the inductor is discontinued, which results in an infinite voltage pulse across the inductor. The integral of the voltage over time corresponds to a magnetic flux in the inductor. Such a pulse is known as Dirac pulse, or delta-function.

Infinite current or voltage pulses may also occur if **Rise** or **Fall** parameter of voltage or current sources is set to zero, producing similar infinitely short slope of voltage or current. Such a slope is also shown as a "jump" of voltage or current during minimal calculation step used at that moment.

In NL, the current or voltage delta-function is shown as a triangle pulse with the duration of each slope equal to minimal calculation step used at that moment, and the area satisfies charge or magnetic flux conservation law.

Simulation step. Unlike many analog simulators, NL does not perform automatic step control. Selecting simulation step is user's responsibility. This gives user full control on simulation, although it requires certain experience and understanding of the process. The rule of thumb is keeping simulation step below smallest time constant in the circuit, otherwise the integration method may get unstable, and produce "numerical oscillations" when signal is "jumping" up and down at each simulation step.

Although simulation step is specified by user, NL still can **automatically reduce the step** to satisfy the following conditions:

- Period of sine source contains at least 16 steps.
- Pulse or switch On/Off state contains at least 4 steps.
- Non-zero rising or falling edge contains at least 4 steps.
- Interval between two points of the source component, interpolating the signal between two points, contains at least 4 steps.
- Delay time of transmission line and "delay" component contains at least 2 steps.

Also, simulation step can be reduced to detect switching point and perform accurate switching.

Traces. During simulation, NL only stores data for specified **traces**. Pause or stop simulation to add/remove traces, then continue simulation or start simulation again.

Memory. Simulation data is stored in the operating memory. The memory is allocated as needed by relatively small blocks. If available operating memory is not enough for all the data, some of the blocks currently storing the very beginning of the trace will be reassigned to a new data, and thus some traces may be "truncated" at the beginning. When this happens the first time, the warning message will be displayed in the status bar of **Transient window**.

By default, NL saves all calculated data for all traces. To reduce memory consumption, a simple data compression method can be used: if several data points in a row have the same amplitude, only first and last point of such sequence are being stored and shown.

Running transient

Go to **Settings window** (select desired Transient settings tab).

- Start transient (available on the Schematic and Transient window toolbars). When simulation is running, schematic cannot be edited, and component parameters/model cannot be changed. Stop or Pause simulation to do any changes.

- Pause transient (or press Space).

- Continue transient (or press Space).

* - Stop transient. Clear extra memory allocated for simulation. Simulation cannot be continued.

Simulation is always paused at the right edge of the screen. Please note that simulation step is not adjusted to stop exactly at the screen edge, so the last calculated point could have time greater than screen edge. Press **Space** or click **Continue** to continue simulation.

Transient window

To add transient traces, go to Add traces \clubsuit tab of Settings window \square .

Go to Format traces 🛅 tab of Settings window 🌋 to select trace type, color, scales, etc.

Go to Screen 😑 tab of Settings window 🛣 to configure Transient window horizontal scale.

Vertical scale. Each trace is shown with its individual Scale and Mid values, specified at Format

traces tab of **Settings window .** Vertical scale and gridlines are shown for one selected trace, or several selected traces if their **Scale** and **Mid** values are the same. If several traces with different **Scale** or **Mid** values are selected, vertical scale is not shown.

All vertical zoom/scroll/reset operations (buttons, keys, mouse, mouse wheel) will change scales and offsets of all traces accordingly.

Click **Reset vertical scale** to set **Scale** and **Mid** of all traces to default values.

Click **Separate traces** button or press **Tab** to show each trace in its own smaller area separated by horizontal lines:

Mouse. There are 3 modes of **mouse operation** in analog sections:

Cursors Remode. In this mode, **double-click** to center the screen to the mouse pointer position.

Zoom mode (press and hold **Ctrl** key to switch to **zoom** mode temporarily). Click and drag to select horizontal, vertical, or rectangle area to be zoomed-in:

to select vertical area.

to select horizontal area.

drag to scroll the screen.

lly Move mouse pointer vertically

Move mouse pointer diagonally to select rectangle area.

Scrolling mode (press and hold Shift key to switch to scrolling mode temporarily). Click and

Mouse wheel:

Mouse wheel – horizontal zoom (relative to mouse pointer position). Shift-mouse wheel – horizontal scroll. Ctrl-mouse wheel – vertical zoom (relative to mouse pointer position). Ctrl-Shift-mouse wheel – vertical scroll. **Status bar** shows current transient time, simulation status (running, paused), and amount of memory allocated for calculation and data.

Legend shows list of traces currently displayed on the graph.

- **Click** on the border of the legend and drag to move the legend window.
- **Click** on the trace in the legend to select one trace.
- **Ctrl-click** to select more than one trace or un-select the trace.
- Go to **Preferences A**, **Legend** tab to select legend style (colors, font).

Keys and shortcuts:

F5 – show transient window $\boxed{12}$.

F6 - start transient ➡.

F7 - stop transient **★**. **Space** – pause/continue transient.

Up, **Down** – vertical scroll.

PgUp, PgDn – vertical zoom \ddagger , \ddagger . **Home** – vertical fit the screen, same as \ddagger .

Left, Right – horizontal scroll.

End – center beginning of traces (set to the middle of the screen).

Ctrl-End – center end of traces.

Shift-End – center middle of the traces.

Ctrl-PgUp, Ctrl-PgDn – horizontal zoom ++ , ++ .

Ctrl-Home – horizontal fit the screen $\textcircled{\bullet}$.

Shift-PgUp, Shift-PgDn – vertical and horizontal zoom.

Shift-Home – fit the screen **.**

Tab – separate traces 🖾.

Transient settings

👚 nl1 - Transient sett	ings - Simulation		×
🖸 🖸 🗕 🗙 4	▶ ╇		
7 🔸 🖾 目		Check all	Select all
0.0 10 1e-3	Start, s Screen, s Step, s	V(C1)	
T Advanced setting	35 Apply	Check traces to be graph	shown on the

Screen. Screen size settings at simulation start (simulation always starts at t=0).

Step. Maximum calculation step. Actual step may be reduced by the algorithm if needed.

Select trace type to add: V, I, P.

Select one or more components in the list, then click 🗣 Add new trace, or double-click on the component in the list.

Format traces

T nl1 - Transient settings - Format traces	×
* + 🖻 🗖	
V(V1) Trace	
10 - Scale 🚺 ⊅	
0 v Mid	
Color E 1 Vidth	
🗹 Line 🔛 Data points	
Apply	Check traces to be shown on the graph

Check traces to be shown on the transient graph.

Select one or more traces (using **Ctrl** and **Shift** keys) to perform operations on selected traces. Click **Select All** to select all traces. Traces can also be selected in the **Legend** area of the Transient window.

The top toolbar provides various operations on selected traces and trace data.

If more than one trace is selected, only parameters of the same value for **all** selected traces will be shown, otherwise parameter field will be blank. If colors are different, the color will be displayed like

this: Color . If a new value is entered in the empty field, that value will be assigned to all selected traces.

Scale, Mid – scale values for analog trace. Click 🔽 to select from previously used values. Click

to auto-scale, or $\stackrel{\clubsuit}{\Rightarrow}$ to reset vertical scale of selected traces.

Color - click colored rectangle to select trace color.

Width - enter or select from drop-down list trace width in pixels.

Line – show lines.

Data points – show simulation data points.

👚 nl1 - Transient setting	gs - Screen		×
Image: Constraint of the second se	gs - Screen	✓ Check all ✓ ✓ ✓ ✓ ✓ ✓ ✓	X Select all
	Apply	Check traces to be graph	e shown on the

View and modify screen horizontal scale.

V. AC analysis

Algorithm

There is only one method of AC analysis in NL: Linearize schematic.

Linearize schematic is a standard low-signal AC analysis. First, all non-linear components are replaced with linear equivalents at their operating point. Second, a signal of specified frequency with unit amplitude and zero phase is applied to the input node, and signals at other nodes are found by solving a system of linear equations. The process is repeated for specified number of frequencies.

In order to linearize schematic, states of all components should be known. It can be done manually by setting Initial Conditions (IC) for non-linear components, diodes, and controlled switches, or by automatic calculation of DC operating point (**Calculate DC operating point** check box in the **AC Settings**). DC operating point is calculated exactly as in transient analysis.

AC source O. Any voltage source, current source, or label can be used as AC source. Component selected as AC source will be marked with "(AC)" text on the schematic and in the Components window:

The AC source component may have any model (except **Label, and IC**): the model will be ignored for **Linearized schematic** method. DC voltage/current of the component will be set to its DC value at t=0, and AC voltage/current required for AC analysis will be added to that DC level.

Running AC analysis

T - Go to **Settings window** (select desired AC settings tab).

- Start AC (available on the Schematic and AC window toolbars). When simulation is running, schematic cannot be edited, and component parameters/model cannot be changed.

 - Stop AC.

AC window

To add AC traces and specify AC source, go to Add traces 🕈 tab of Settings window 🕮. Go to Format traces 🖼 tab of Settings window 🖉 to select trace color, scales, etc. Go to Screen 🔁 tab of Settings window 🌋 to configure AC window scales.

Scales. All traces are shown with the same scales, which can be linear or logarithmic.

Phase display method selection:

- **Phase off** \square do not show phase.
- **Phase On** \square show phase in the same window with other traces.
- **Phase separate** $\stackrel{\text{\tiny E}}{\stackrel{\text{\tiny E}}{\stackrel{\text{\tiny E}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}}{\stackrel{\text{\tiny F}}}}}}}}}}}}}}$

Mouse. There are 3 modes of mouse operation:

Cursors mode: **double-click** to center the screen to mouse pointer position (magnitude only).

Zoom mode (press and hold **Ctrl** key to switch to **zoom** mode temporarily). Click and drag to select horizontal, vertical, or rectangle area to be zoomed-in:

Move mouse pointer horizontally to select horizontal area.

Move mouse pointer vertically to select vertical area.

Move mouse pointer diagonally to select rectangle area.

Scrolling mode (press and hold **Shift** key to switch to **scrolling** mode temporarily). Click and drag to scroll the screen.

Mouse wheel:

Mouse wheel – horizontal zoom (relative to mouse pointer position). Shift-mouse wheel – horizontal scroll. Ctrl-mouse wheel – vertical zoom (relative to mouse pointer position). Ctrl-Shift-mouse wheel – vertical scroll.

Keys and shortcuts:

F8 – show AC window \bigodot F9 - start AC \rightleftharpoons Tab – toggle Phase display mode \boxdot \bigotimes \bigotimes

Up, Down – vertical scroll.

PgUp, PgDn – vertical zoom \ddagger , \ddagger . **Home** – vertical fit the screen \ddagger .

Left, Right – horizontal scroll.

Ctrl-PgUp, Ctrl-PgDn – horizontal zoom ↔, ↔. Ctrl-Home – horizontal fit the screen ↔.

Shift-PgUp, Shift-PgDn – vertical and horizontal zoom. Shift-Home – fit the screen ♥.

Status bar shows current frequency of AC simulation (progress).

Legend shows list of traces currently displayed on the graph.

- **Click** on the border of the legend and drag to move the legend window.
- **Click** on the trace in the legend to select one trace.
- Ctrl-click to select more than one trace or un-select the trace.
- Go to **Preferences** A, Legend tab to select legend style (colors, font).

AC settings

nl1 - AC settings - Simulation	×
' 🔍 🗕 🗙 ♠ ♣	
T 🔶 🖾 🕀	Check all Select all
	purce
Irequency: 1e-3 From, Hz 1e+3 500 Points Log Scale	
Calculate DC operating point	
T Advanced settings	Check traces to be shown on the graph

AC source – enter the name of AC source component or select the name from drop-down list.

Component selected as AC source will be marked with (AC) text on the schematic and in the **Components window**.

Frequency - select frequency, number of points, and scale type.

Calculate DC operating point – use this option for non-linear schematic if needed.

👚 nl1 - AC se	ttings - Add 1	traces		×
- 🗠 🗈	X + +	·		
👕 🔸 🖾	+		🗹 Check all	<u>Select all</u>
🔶 Add new t	ace		V(C1)	
V	C1 B1			
Z Gamma	V1 out			
VSWR				
		Apply	Check traces to b graph	be shown on the

Select trace type to add: V, I.

Select one or more components in the list, then click 🗣 Add new trace, or double-click on the component in the list.

Format traces

Check traces to be shown on the AC graph.

Select one or more traces (using Ctrl and Shift keys) to perform operations on selected traces. Click Select All to select all traces. Traces can also be selected in the Legend area of the AC window.

The top toolbar provides various operations on selected traces and trace data.

If more than one trace is selected, only parameters of the same value for **all** selected traces will be shown, otherwise parameter field will be blank. If colors are different, the color will be displayed like

this: Color . If a new value is entered in the empty field, that value will be assigned to all selected traces.

Display defines how the trace will be displayed:

- Mag/Phase magnitude and phase.
- **Re** real part only.
- **Im** imaginary part only.

Color - click colored rectangle to select trace color.

Width - enter or select from drop-down list trace width in pixels.

Phase width - enter or select from drop-down list phase width in pixels.

Line – show lines.

Data points – show simulation data points.

Screen

T nl1 - AC settings - Screen	×
@ ∾ ► × ♠ ₽	
👕 🔶 🕅 🕀	Check all Select all
Horizontal Log 1e-3 Left, Hz 1e+3 Right, Hz Vertical Log dB 0 Top -80 Bottom Phase : Separate 90 ~ Top 90 ~ Top 90 ~ Souther Separate 90 ~	V(C1)
Apply	Check traces to be shown on the graph

Phase - **s**elect phase display mode:

- Off do not show phase.
- **On s**how magnitude and phase in the same area of the graph.
- Separate show magnitude and phase in separate areas of the graph.

Press Tab in the AC Window to toggle Phase display mode.