

NL5 DLL
User’s Manual

Ver.3.12

 NL5 DLL User’s Manual

 1

VERSION

NL5 DLL User’s Manual version 3.12.19, 04/24/2024

The latest version of User’s Manual can be found at sidelinesoft.com/nl5.

LIMITED LIABILITY

NL5 DLL, together will all accompanying materials, is provided on a “as is” basis, without

warranty of any kind. The author makes no warranty, either expressed, implied, or stationary,

including but not limited to any implied warranties of merchantability or fitness for any purpose.

In no event will the author be liable to anyone for direct, incidental or consequential damages or

losses arising from use or inability to use NL5 DLL.

COPYRIGHTS

© 2024, A.Smirnov, Sidelinesoft LLC. The software and User’s Manual are copyrighted. No

portion of this Manual can be translated or reproduced for commercial purpose without the

express written permission from the copyright holder.

Microsoft, Windows, and Microsoft Visual C++ are registered trademarks of Microsoft Corporation. MATLAB is a

registered trademark of The MathWorks, Inc. PYTHON is a registered trademark of the Python Software Foundation.

Borland C++ Builder is a registered trademark of Borland Corporation. Verilog is a registered trademark of Cadence

Design Systems. Xilinx and Vivado are registered trademarks of Xilinx.

https://sidelinesoft.com/nl5/

 NL5 DLL User’s Manual

 2

Table of Contents

I. Introduction .. 5

What is NL5 DLL ... 6
Version .. 6

Files ... 6
License .. 7

II. Using DLL.. 8

Functions .. 9
Function parameters .. 9

Function result .. 9
Handles ... 10

Using DLL.. 11
Error message.. 11
DLL information ... 11
License .. 11

Schematic .. 12
Parameters ... 13

Traces .. 15
Co-simulation .. 16
Inputs/Outputs ... 17

Transient simulation.. 18
Simulation data ... 22

Data post-processing ... 25

AC simulation ... 26

Using DLL with MATLAB .. 28

Using DLL with Python .. 32

Using DLL with SystemVerilog ... 37
Files ... 37

Using DLL .. 37
Using DLL with C-code “wrapper” .. 38

Running co-simulation demo with Xilinx Vivado .. 39
Creating demo project ... 39
Creating library file ... 43

Configuring and running demo ... 44

Demo circuit.. 49

III. DLL Functions ... 50

NL5_GetError .. 51

NL5_GetInfo .. 52

NL5_GetLicense ... 53

NL5_Open ... 54

NL5_Close ... 55

NL5_Save ... 56

 NL5 DLL User’s Manual

 3

NL5_SaveAs... 57

NL5_GetValue .. 58

NL5_SetValue .. 59

NL5_GetText .. 60

NL5_SetText .. 61

NL5_GetParam .. 62

NL5_GetParamValue .. 63

NL5_SetParamValue .. 64

NL5_GetParamText .. 65

NL5_SetParamText .. 66

NL5_GetTrace .. 67

NL5_AddVTrace ... 68

NL5_AddITrace ... 69

NL5_AddPTrace ... 70

NL5_AddVarTrace... 71

NL5_AddFuncTrace .. 72

NL5_AddDataTrace .. 73

NL5_DeleteTrace... 74

NL5_GetInput .. 75

NL5_SetInputValue .. 76

NL5_SetInputLogicalValue ... 77

NL5_GetOutput ... 78

NL5_GetOutputValue ... 79

NL5_GetOutputLogicalValue... 80

NL5_SetStep .. 81

NL5_SetTimeout ... 82

NL5_GetSimulationTime .. 83

NL5_Start ... 84

NL5_Simulate .. 85

NL5_SimulateInterval... 86

NL5_SimulateStep .. 87

NL5_SaveIC... 88

NL5_GetDataSize... 89

NL5_GetDataAt ... 90

NL5_GetLastData... 91

NL5_GetData .. 92

NL5_AddData .. 93

NL5_DeleteData ... 94

NL5_SaveData .. 95

NL5_SetAC ... 96

NL5_SetACSource... 97

NL5_CalcAC... 98

NL5_GetACTrace ... 99

NL5_GetACDataSize .. 100

NL5_GetACDataAt... 101

 NL5 DLL User’s Manual

 4

NL5_SaveACData ... 102

IV. Attachments ... 103

END USER LICENSE AGREEMENT .. 104

 NL5 DLL User’s Manual

 5

I. Introduction

 NL5 DLL User’s Manual

 6

What is NL5 DLL

NL5 DLL is a 64-bit dynamic-linked library available for Windows, Linux, and macOS. It is included

in the NL5 Circuit Simulator package. NL5 DLL performs transient and AC simulation of circuits

created by NL5 Circuit Simulator, provides raw simulation data, allows modification of circuit

parameters, adding data traces, and some other operations through DLL API functions. It can be used as

an analog simulator which is started and controlled from other applications and tools (MATLAB,

Python, custom C/C++ code), and as an analog co-simulation tool working with digital simulation tools

(for example SystemVerilog simulators through DPI interface).

NL5 DLL users are supposed to be familiar with NL5 Circuit Simulator principle and operation. Please

refer to NL5 Manual and NL5 Reference for information.

Please use public resources or specific documentation for general information about dynamic-linked

libraries, SystemVerilog, and digital simulation tools.

Version

Current released Version and Revision of NL5 DLL is always the same as Version and Revision of NL5

Circuit Simulator. This guarantees full compatibility in terms of components, models, features, and

performance. However, there is nothing wrong in using different Versions/Revisions of DLL and NL5.

Current build of DLL can be different from NL5, due to possible DLL and NL5 specific fixes and

modifications.

NL5 DLL is distributed as part of NL5 complete package, which can be found at sidelinesoft.com/nl5.

NL5 DLL Ver.3 can open and simulate schematics created by NL5 Ver.2. When saved back into the file,

a schematic will be automatically converted to Ver.3 format and cannot be opened by NL5 Ver.2

anymore.

Files

The following files are distributed to customers:

- nl5_dll.h

- nl5_dll.lib

- nl5_dll.dll - Windows

- nl5_dll.so - Linux

- nl5_dll.dylib – macOS (x64 and arm64)

- MATLAB/ - demo files for MATLAB

- Python/ - demo files for Python

- SystemVerilog/ - supporting files for SystemVerilog

- SystemVerilog/Vivado/ - supporting files for co-simulation with Vivado

https://sidelinesoft.com/nl5/

 NL5 DLL User’s Manual

 7

License

Without a license, NL5 DLL operates as a Demo version. Demo version has all full function features

available, however the total number of components in the schematic is limited to 20. For unlimited

number of components, NL5 DLL should use NL5 License.

 NL5 DLL User’s Manual

 8

II. Using DLL

 NL5 DLL User’s Manual

 9

Functions

Function parameters

The following parameter types are used in DLL functions:

int - 32-bit integer

double - 8-byte floating point

char* - pointer to null-terminated ASCII (1-byte) character string (character array)

Some functions return double values through pointers to double variable (double*) provided as a

parameter of the function.

Function result

Most of DLL functions return integer value: function result. If function result is negative, it is an error

code. Only error code -1 is currently used, however more error codes may be added in the future. It is

not recommended to continue DLL execution if error code was received, since it may result in DLL

crash.

If error code is returned, text description of the error can be obtained by NL5_GetError function:

if(NL5_GetValue(ncir, "R1.R", &value) < 0)

{

 printf("%s", NL5_GetError());

}

In case of successful execution, some functions return 0, and some functions return non-negative integer

value, with the meaning depending on the function. For example, NL5_Open returns integer value: circuit

handle, NL5_GetText returns number of characters placed into the character array, etc.:

int ncir = NL5_Open("rc.nl5");

if(ncir < 0)

{

 printf("%s", NL5_GetError());

}

 NL5 DLL User’s Manual

 10

Functions NL5_GetInfo and NL5_GetError return pointer to null-terminated ASCII character string:

char* str = NL5_GetInfo();

printf("%s", str);

The content of that string is valid only until execution of the next DLL function: then it will be changed.

If the text requested by calling those functions is needed for the future use, it is user’s responsibility to

copy it to safe location.

Handles

Handle is an index of the object in the internal DLL objects list. Handle is non-negative integer value.

Some functions return handle as a function result. The handle referring to a specific object can be used

as a parameter for other functions, related to that object. Handles are used for circuits, component

parameters, inputs/outputs, and traces.

For example, function result of function NL5_Open is circuit handle. Once received, the handle can be

used as an ncir parameter for many other functions, such as NL5_Simulate, NL5_GetValue,

NL5_GetParam, NL5_GetTrace, etc.:

int ncir = NL5_Open("rc.nl5");

if(ncir < 0)

{

 printf("%s", NL5_GetError());

}

double r;

if(NL5_GetValue(ncir, "R1.R", &r) < 0)

{

 printf("%s", NL5_GetError());

}

 NL5 DLL User’s Manual

 11

Using DLL

Error message

A general function which may be called after calling practically any other function is NL5_GetError. It

returns text description of the error which might occur while executing previous function, or “OK” if

execution was successful:

if(NL5_GetValue(ncir, "R1.R", &value) < 0)

{

 printf("%s", NL5_GetError());

}

DLL information

A function you might want to call at DLL startup is NL5_GetInfo. It returns information about DLL:

version and date:

char* str = NL5_GetInfo();

printf("%s", str);

This information is useful for troubleshooting, so please provide it when submitting bug reports or other

requests.

License

If you have NL5 License with DLL option, call NL5_GetLicense function before performing

simulation. Specify path of the license nl5.nll file as a parameter of the function. Call NL5_GetError

right after that to obtain License ID or text description of the error:

int err = NL5_GetLicense("C://Projects/nl5/nl5.nll");

printf("%d, %s", err, NL5_GetError());

Error code and text description of the error are useful for troubleshooting, so please provide it when

submitting bug reports or other requests.

Another way to use the license is placing the license file into the same folder as schematic file to be

simulated. If NL5_GetLicense function was not called, then NL5_Open function will automatically try

to find and check the license.

 NL5 DLL User’s Manual

 12

Schematic

To perform simulation, a schematic should be loaded into the DLL from a schematic “*.nl5” file. Once

loaded, the schematic is stored in the DLL memory, and can be used for simulation. During simulation,

the circuit component parameters can be modified by DLL, and simulated data will be saved as a traces.

A modified schematic with simulation data can be saved back into the schematic file.

To load schematic into DLL use NL5_Open function. If file name does not have a path, DLL will look

for a file in the directory where DLL is located. The function returns non-negative circuit handle ncir,

which will be used in other DLL functions to identify the circuit:

int ncir = NL5_Open("rc.nl5");

if(ncir < 0)

{

 printf("%s", NL5_GetError());

}

If schematic file could not be loaded for any reason, a negative error code is returned. Also, an error

occurs if requested file consists of too many components (currently 10) and is not DLL-enabled. Call

NL5_GetError function to get text description of the error.

You can load several circuits at once by calling NL5_Open: a unique circuit handle will be returned for

each circuit. If circuit is not needed anymore, it can be closed by NL5_Close function, however closing

the circuit is not required.

The circuit can be saved back to the same schematic file by calling NL5_Save, or to a new file by

calling NL5_SaveAs functions:

int ncir = NL5_Open("rc.nl5");

NL5_SetValue(ncir, "R1.R", 123.456);

NL5_SaveAs(ncir, "rc_new.nl5");

NL5_Close(ncir);

Use these functions to save schematic back to the file if any modification of component parameters were

made by DLL, IC (Initial Conditions) were saved, or if you want to save schematic with obtained

simulation and post-processing data.

To save schematic with transient and/or AC data, load schematic file in NL5, go to

Schematic/Settings/Save options, and enable Save with transient data and/or Save with AC data

option.

 NL5 DLL User’s Manual

 13

Parameters

DLL functions can access and modify component parameters. Parameters can be modified before

simulation is started, as well as between DLL simulation calls. This is similar to pausing NL5

simulation, changing the parameter, and continuing the simulation.

Please be aware that changing the parameter between DLL simulation calls will result in recalculating

the system matrix and switching to a new linear range of simulation. If parameters are being changed

often, it may affect simulation speed. To change the value of voltage or current source in a “continuous

manner”, use DLL input functions instead. Those functions will modify the value of the sources

keeping the simulation in the same linear range, which results in much more efficient and fast

simulation. Please note that source values defined and changed as an input will not be saved into

schematic file by NL5_Save and NL5_SaveAs finctions.

To specify parameter name in the function, use component parameter name in the format

<component>.<parameter> ("R1.R", "V1.V"). See NL5 Circuit Simulator Manual for details (User

Interface/Data format/Names).

There are two methods to access component parameters:

1. Direct.

2. Through parameter handle.

Direct method is an easiest one, however not optimal in terms of performance. To get component

parameter value, use NL5_GetValue function. It returns value into the variable of double type. The

pointer to that variable is passed to the function as a parameter:

 double value;

NL5_GetValue(ncir, "R1.R", &value);

See Reference for explanation on working with different parameter types.

To set parameter value, use function NL5_SetValue:

NL5_SetValue(ncir, "R1.R", 123.456);

To get/set parameter value represented as a text, use NL5_GetText and NL5_SetText functions. These

functions are applicable to practically all parameter types, including numerical. If numerical parameter

is defined as a formula, those functions will get/set text of the formula:

 char str[100];

NL5_SetText(ncir, "V1.Slope", "Linear");

NL5_GetText(ncir, "V1.Slope", str, 100);

// returns str = "Linear"

NL5_GetText(ncir, "R1.R", str, 100);

// returns str = "1.23e-3"

NL5_SetText(ncir, "R2.R", "=R1.R*2");

NL5_GetText(ncir, "R2.R", str, 100);

 NL5 DLL User’s Manual

 14

// returns str = "=R1.R*2"

These function can also be used to access and modify component model by using <component>.model

format:

NL5_GetText(ncir, "V1.model", str, 100);

// returns str = "Pulse"

NL5_SetText(ncir, "V1.model", "Sin");

Accessing parameters through parameter handle would be a better option if parameter is being

accessed at least several times. Using that method improves performance by parsing parameter name

and searching for required component and parameter only once while obtaining parameter handle.

Use NL5_GetParam function to obtain the parameter handle first:

 int nparam = NL5_GetParam(ncir, "R1.R");

 if(nparam < 0))

{

 printf("%s", NL5_GetError());

}

Then use the parameter handle in functions NL5_GetParamValue, NL5_SetParamValue,

NL5_GetParamText, and NL5_SetParamText:

NL5_SetParamValue(ncir, nparam, 1.0);

. . .

double r;

NL5_GetParamValue(ncir, nparam, &r);

 NL5 DLL User’s Manual

 15

Traces

DLL will store simulation data for all traces specified in the schematic file. The data can be accessed

through the trace handle, obtained by NL5_GetTrace function for transient trace, or NL5_GetACTrace

function for AC trace:

 int ntrace = NL5_GetTrace(ncir, "V(R1)");

 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

A new trace for transient simulation can be added using functions NL5_AddVTrace, NL5_AddITrace,

NL5_AddPTrace, NL5_AddVarTrace, and NL5_AddFuncTrace. These functions return trace handle. In

the following example, a trace with voltage across resistor R1 is added:

 int ntrace = NL5_AddVTrace(ncir, "R1");
 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

To minimize memory consumption, or accelerate simulation, any trace can be deleted by

NL5_DeleteTrace function:

 NL5_DeleteTrace(ncir, ntrace);

Please note that DLL does not calculate traces of Math type. Those traces are calculated only when

using GUI version of NL5.

A special trace of Data type can be used for post-processing (see Data post-processing section for

details),

 NL5 DLL User’s Manual

 16

Co-simulation

NL5 DLL can be used for transient co-simulation with other tools, such as system-modeling, behavioral

modeling tools, or digital simulators. DLL will provide fast and reliable simulation of analog part of the

system. To provide better performance of co-simulation, the following system structure is suggested.

The analog circuit has constant voltage or current sources (Label, Voltage source, or Current source

components) specified as inputs. The voltage or current value of those inputs are modified by the other

tool before calling DLL simulation.

Also, the analog circuit has voltage or current meters (Label, Voltmeter, or Amperemeter) specified as

outputs. When DLL simulation is completed for requested interval, the voltages/currents at specified

outputs are transferred to the other tool as a result of analog simulation.

Here is an example of an analog part of the system, with two inputs (Labels “in1”, “in2”) and two

outputs (Labels “out1”, “out2”):

Please note that input signals are modified in a “continuous” manner, keeping the simulation in the same

linear range, thus providing fast simulation. However, any component parameters can be modified using

parameter-based functions (for example NL5_SetValue) as well: this will result in recalculating the

system matrix and switching to a new linear range of simulation.

If state of switch component needs to be modified, use voltage-controlled switch controlled by the input

voltage source.

Please note that DLL will not store all simulated data at specified outputs: only last simulated data at the

output is being stored until the next simulation call. However, DLL will still store data of all traces,

specified in the circuit file, or added by calling DLL function. When the circuit is saved back into

schematic file, the simulated data of those traces will be saved too, if “Save with transient data” option is

set in the schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select

“Save with transient data” checkbox, and save schematic into the file.

Use inputs/outputs DLL functions to specify inputs and outputs for co-simulation.

 NL5 DLL User’s Manual

 17

Inputs/Outputs

Inputs/outputs can be accessed through the input/output handle.

Inputs. Call NL5_GetInput function to specify the input. 3 types of components can serve as an input:

- Label component;

- Voltage source component (V);

- Current source component (I).

-

Provide the label/component name as a parameter of the function. The function returns non-negative

integer value: input handle:

 int nin = NL5_GetInput(ncir, "in1");

 if(nin < 0))

{

 printf("%s", NL5_GetError());

}

Use the handle and a desired source value to set input voltage/current by NL5_SetInputValue function:

int nin = NL5_GetInput(ncir, "in1");

. . .

NL5_SetInputValue(ncir, nin, 10.0);

Outputs. Call NL5_GetOutput function to specify the output. 3 types of components can serve as an

output:

- Label component;

- Voltmeter (V);

- Amperemeter (A).

Provide the label/component name as a parameter of the function. The function returns non-negative

integer value: output handle:

 int nout = NL5_GetOutput(ncir, "out1");

 if(nout < 0))

{

 printf("%s", NL5_GetError());

}

Use the handle and a pointer to the double variable to obtain output voltage by NL5_GetOutputValue

function:

int nout = NL5_GetOutput(ncir, "out1");

. . .

double v;

NL5_GetOutputValue(ncir, nout, &v);

Typically, NL5_SetInputValue functions should be called for each specified input before calling DLL

simulation function, and NL5_GetOutputValue functions should be called for each specified output after

 NL5 DLL User’s Manual

 18

simulation function returns. However, those functions can be called any time. Input functions can be

called only when input value, changed, and output functions can be called only when output value is

needed.

Transient simulation

Transient simulation is performed with simulation step defined in the schematic file (see NL5

transient settings: Transient/Settings/Calculation step). If needed, the step can be modified any time by

NL5_SetStep function:

 double step = 1.0e-6;

 NL5_SetStep(ncir, step);

To prevent DLL from being “stuck” due to erroneous code of C-code component (infinite while/do/for

loop), or inability to resolve states of piece-wise linear components, a simulation time-out can be set

up using function NL5_SetTimeout:

 int time_out = 3;

 NL5_GetTimeout (ncir, time_out);

If simulation time of one transient step exceeds the time-out value (in seconds), the simulation will stop

with error message. Time-out equal to zero disables time-out detection.

DLL keeps track of current simulation time in the internal simulation_time variable. When

simulation function is called, simulation is continued for requested interval starting from current

simulation_time. Current simulation_time value can be obtained by NL5_GetSimuationTime

function:

 double current_time;

 NL5_GetSimulationTime(ncir, ¤t_time);

To start simulation, call NL5_Start function. It resets simulation_time to 0, initializes circuit

components, erases existing simulation data, and calculates initial state of the circuit according to

specified Initial Conditions. This function should be called first to start simulation from t=0, prior to

calling any simulation functions. When NL5_Start returns, the simulation data consists of circuit state

at t=0. The simulation data at t=0 can be obtained by data-related functions described later.

However, calling NL5_Start is not required. It will be executed automatically if any of simulation

functions is called, while simulation has not been started yet.

After simulation is started, there are three methods of performing simulation:

1. Simulate;

2. Simulate interval;

3. Simulate step.

You can use just one method during all simulation, or any combination in any order.

 NL5 DLL User’s Manual

 19

Simulate method is performed by NL5_Simulate function, and it runs simulation for requested

interval. The function does not change simulation step in order to stop exactly at the end of requested

time, so the time of the last calculated data may exceed requested end time. When next simulation

function is called, simulation will be continued with simulation step equal to the last simulation step.

Here is an example of two consecutive calls of NL5_Simulate function. The first call was made at t =

3s (not shown on the graph), with interval = 3s:

 NL5_Simulate(ncir, 3.0);

Due to selected simulation step = 1s, simulation stopped when the time of the last data point was 6.5s,

which exceeded requested end time = 6s. At that moment, reported simulation_time = 6.5s:

When NL5_Simulate function with the same 3s interval is called again, simulation continues with the

same simulation step = 1s, and stops at end time = 9s, with reported simulation_time = 9.5s:

Using NL5_Simulate function provides the best simulation performance. It won’t decrease simulation

step at the end of current linear range, so that there is no need to restore the step back as simulation

continues. Thus, the simulation will be performed in a fastest manner, regardless of simulation

interruptions.

 NL5 DLL User’s Manual

 20

Simulate interval method is performed by NL5_SimulateInterval function, and it runs simulation

exactly for requested interval. Unlike NL5_Simulate, it will adjust (decrease) simulation step if needed

to stop exactly at the end of the requested interval. When next simulation function is called, simulation

step will be restored, and a new linear range will be started.

Please note that if requested interval is smaller than simulation step, NL5 may not be able to decrease

simulation step exactly as needed, and actual simulated interval might be longer than requested. To

avoid that, it is recommended to use simulation step at least not greater than desired intervals.

Here is an example of two consecutive calls of NL5_SimulateInterval function. The first call was

made at t = 2.5s (not shown on the graph), with interval = 3.5s:

 NL5_SimulateInterval(ncir, 3.5);

Simulation was performed with constant simulation step = 1s. Simulation stopped exactly at 6s, as

requested. In order to do that, the last simulation step was decreased from 1s down to 0.5s:

When NL5_SimulateInterval is called again with requested interval = 3.5s, simulation step is

restored back to 1s, and simulation continues:

In this call, simulation step was also decreased at the end of the interval from 1s down to 0.5s, in order

to stop exactly at 9.5s.

Due to possible change of simulation step even within the linear range, using of

NL5_SimulateInterval may result in extremely slow simulation (especially if requested interval is

small, and comparable with simulation step). Use this function only if it is really needed for your task.

 NL5 DLL User’s Manual

 21

Simulate step method is performed by NL5_SimulateStep function, and it executes just one

simulation step. At the end, simulation_time is incremented by that simulation step, so that

simulation_time is always equal to the time of last calculated data point.

Here is an example of simulation using NL5_SimulateStep function:

 NL5_SimulateStep(ncir);

Please note that simulation step can be reduced by simulation algorithm if needed.

NL5_SimulateStep function can be used if DLL performs co-simulation with another simulation tool

when it should continuously provide state of analog circuit with minimal possible time interval.

One more function related to simulation is NL5_SaveIC. Calling this function is similar to executing

command Transient/Save IC in the NL5 Circuit Simulator. Current Initial Conditions are saved into

components in the DLL memory. Use NL5_Save or NL5_SaveAs to save components with new Initial

Conditions into the schematic file.

 NL5 DLL User’s Manual

 22

Simulation data

NL5 DLL saves all simulated data points into DLL memory. To obtain data of a specific trace, first

obtain trace handle by calling NL5_GetTrace function:

 int ntrace = NL5_GetTrace(ncir, "V(R1)");

 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

There are three ways to retrieve the data of the trace:

1. Read interpolated data;

2. Read data of a specific data point;

3. Read last data.

To read interpolated data at specific time, use NL5_GetData function with the time as a parameter, and

pointer to double for amplitude of the data point:

 double data;

NL5_GetData(ncir, ntrace, 1.234, &data);

Please be aware that interpolated data are calculated using linear interpolation, and may not accurately

represent actual signals of the circuit between calculated data points.

To read the data of a specific data point, use NL5_GetDataAt function with index of the data point.

Provide pointers to double variables for time and amplitude of the data point:

 double t, data;

 int index = 123;

NL5_GetDataAt(ncir, ntrace, index, &t, &data);

Data point index is zero-based: index of the first data point is 0, index of the last data point is equal to

number of data points minus 1. Use NL5_GetDataSize function to obtain number of data points

available for the trace:

 int ndata = NL5_GetDataSize(ncir, ntrace);

 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

Please note that the number of data points can be different for different traces due to data compression.

 NL5 DLL User’s Manual

 23

To read last data, use NL5_GetLastData function with pointers to double variables for time and

amplitude of the data point:

 double t, data;

NL5_GetLastData(ncir, ntrace, &t, &data);

This function returns the data of last calculated data point.

As mentioned before, NL5_Start function erases all existing simulation data. Then, during simulation,

all data points are being stored into DLL memory. There is a special algorithm in place to reduce the

memory required for the data which are not changing (constant voltage/current supplies, output of

digital components, etc.). However, if simulation is performed with small simulation step, the total

available memory of the DLL can be easily exceeded.

If large amount of simulated data is expected, it is recommended to upload simulated data to your

application or save into the file from time to time and delete that data from DLL memory by calling

NL5_DeleteOldData function:

NL5_DeleteOldData(ncir);

This function does not erase all the data: it always leaves the very last calculated data point, or two data

points, in order to be able to obtain interpolated data in the new interval.

Simulation data can be saved into the file in the NL5 data format:

NL5_SaveData(ncir, "rc_data.nlt");

The data can be loaded into NL5 and shown on the transient graph.

Also, transient data will be saved in the schematic file if Save with transient data option of the

schematic is enabled (Schematic/Settings/Save options in NL5).

 NL5 DLL User’s Manual

 24

In the following example, simulation stopped after simulating two 3 second intervals using

NL5_Simulate function, and final simulation_time = 6.5s:

When NL5_DeleteOldData function is called, it will erase old data, except last two points:

After the next call of NL5_Simulate, the stored data would be:

Now, all the data of the new calculated interval between t = 6s and t = 9s can be retrieved using

interpolation.

 NL5 DLL User’s Manual

 25

Data post-processing

A special trace of Data type can be used for post-processing. Use NL5_AddDataTrace function to create

the trace:

 int ndata = NL5_AddDataTrace(ncir, "trace_name");

To add data to the trace, use NL5_AddData function. In this example, a new calculated trace is equal to

squared V(R1) trace:

 int nsource = NL5_GetTrace(ncir, "V(R1)");

 int size = NL5_GetDataSize(ncir, nsource);

 for(int i=0; i<size; ++i)

 {

 double t, v;

 NL5_GetDataAt(ncir, nsource, i, &t, &v);

 NL5_AddData(ncir, ndata, t, v*v);
}

To delete current trace data (for example, before new simulation run) use NL5_DeleteData function:

 NL5_DeleteData (ncir, ntrace);

The trace can be saved either to NL5 transient data file by NL5_SaveData function, or in the schematic

file, if Save with transient data option of the schematic is enabled (Schematic/Settings/Save options in

the NL5).

 NL5 DLL User’s Manual

 26

AC simulation

NL5 DLL performs AC simulation with simulation parameters specified in the schematic file, or

defined by NL5_SetAC function:

 NL5_SetAC(ncir, from, to, points, log_scale);

To set or change AC source, call NL5_SetACSource function with AC source component name as a

parameter:

 NL5_SetACSource(ncir, “V1”);

Only “Linearize schematic” methos is currently supported. Call NL5_CalcAC function to run

simulation:

 NL5_CalcAC(ncir);

To obtain calculated AC data, first obtain trace handle:

 int ntrace = NL5_GetACTrace(ncir, "V(C1)");

 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

Please note that AC traces cannot be added through NL5 DLL functions: they should be specified in

the schematic file.

To read a specific data point, use NL5_GetACDataAt function with index of the data point. Provide

pointers to double variables for frequency, magnitude, and phase of the data point:

 double f, mag, phase;

 int index = 123;

NL5_GetACDataAt(ncir, ntrace, index, &f, &mag, &phase);

Data point index is zero-based: index of the first data point is 0, index of the last data point is equal to

number of data points minus 1. Use NL5_GetACDataSize function to obtain number of data points

available for the trace:

 int ndata = NL5_GetACDataSize(ncir, ntrace);

 if(ntrace < 0))

{

 printf("%s", NL5_GetError());

}

Typically, all traces should have the same number of data points, however this may change in the future

DLL versions.

AC data can be saved into the file in the NL5 data format:

NL5_SaveACData(ncir, "rc_data.nlf");

 NL5 DLL User’s Manual

 27

The data can be loaded into NL5 and shown on the AC graph.

Also, AC data will be saved in the schematic file if Save with AC data option of the schematic is

enabled (Schematic/Settings/Save options in NL5).

 NL5 DLL User’s Manual

 28

Using DLL with MATLAB

When using NL5 DLL with MATLAB, please use header file nl5_dll.h located in the MATLAB

folder of NL5 DLL download package. Due to the way MATLAB is handling Windows DLLs, all

extern “C” declarations must be removed from the header file.

Simple examples of the MATLAB code dll_example.m can be found in the MATLAB folder of NL5 DLL

download package. The first one, dll_example.m, opens schematic file dll_example.nl5, changes

value of R1 in specified range, runs transient for each R1 value, reads transient data of trace V(out), and

displays results as a 3-D surface.

Here is schematic and results of transient simulation in NL5:

Here is a 3-D surface obtained in similar MATLAB simulation performed with NL5 DLL:

 NL5 DLL User’s Manual

 29

Here is MATLAB code:

clear;

clc;

close all;

R=logspace(-1,1,50);

% load library

loadlibrary('nl5_dll.dll', 'nl5_dll.h');

% open schematic

is = calllib('nl5_dll', 'NL5_Open', 'dll_example.nl5');

calllib('nl5_dll', 'NL5_GetError');

% get trace handle

it = calllib('nl5_dll', 'NL5_GetTrace', is, 'V(out)');

% create pointers to data

pd = libpointer('doublePtr', 0.0);

for k=1:50

 % set R1 value

 calllib('nl5_dll', 'NL5_SetValue', is, 'R1', R(k));

 % simulate for 10 s

 calllib('nl5_dll', 'NL5_Start', is);

 calllib('nl5_dll', 'NL5_Simulate', is, 10.0);

 % read data

 for i=1:100

 t = i*0.1;

 calllib('nl5_dll', 'NL5_GetData', is, it, t, pd);

 Z(k,i)=pd.value;

 end

end

% close document

calllib('nl5_dll', 'NL5_Close', is);

calllib('nl5_dll', 'NL5_GetError');

% unload library

unloadlibrary 'nl5_dll';

[X,Y] = meshgrid(1:100,1:50);

surf(X,Y,Z);

shading flat;

colormap jet;

colorbar;

ylim([0 50]);

Please note that you may need to change path of DLL and header file in function loadlibrary:

loadlibrary('Your_Path\\nl5_dll.dll', 'Your_Path\\nl5_dll.h');

and path of the schematic file in the function calllib which calls DLL function NL5_Open:

is = calllib('nl5_dll', 'NL5_Open', 'Your_Path\\dll_example.nl5');

 NL5 DLL User’s Manual

 30

Another example code dll_ac_example.m performs AC analysis of the same circuit. It changes value

of R1 in specified range, reads AC data of trace V(out), and displays magnitude (in dB) as a 3-D

surface.

Here is schematic, and results of AC simulation in NL5:

Here is a 3-D surface obtained in similar MATLAB simulation performed with NL5 DLL:

 NL5 DLL User’s Manual

 31

Here is the code:

clear;
clc;
close all;
R=logspace(-2,1,50);

% load library
loadlibrary('nl5_dll.dll', 'nl5_dll.h');

% open schematic
is = calllib('nl5_dll', 'NL5_Open', 'dll_example.nl5');
calllib('nl5_dll', 'NL5_GetError');

% get trace handle
it = calllib('nl5_dll', 'NL5_GetACTrace', is, 'V(out)');

% create pointers to data
freq = libpointer('doublePtr', 0.0);
mag = libpointer('doublePtr', 0.0);
phase = libpointer('doublePtr', 0.0);

for k=1:50

 % set R1 value
 calllib('nl5_dll', 'NL5_SetValue', is, 'R1', R(k));

 % simulate for 10 s
 calllib('nl5_dll', 'NL5_CalcAC', is);

 % read data
 for i=1:100
 calllib('nl5_dll', 'NL5_GetACDataAt', is, it, i, freq, mag, phase);
 Z(k,i)=20.0*log10(mag.value);
 end

end

% close document
calllib('nl5_dll', 'NL5_Close', is);
calllib('nl5_dll', 'NL5_GetError');

% unload library
unloadlibrary 'nl5_dll';

[X,Y] = meshgrid(1:100,1:50);
surf(X,Y,Z);
shading flat;
colormap jet;
colorbar;
ylim([0 50]);
view(45,15)

 NL5 DLL User’s Manual

 32

Using DLL with Python

When using NL5 DLL with Python, please use the Python package nl5py located in the Python folder

of NL5 DLL download package. This package makes use of ctypes, which is a foreign function library

for Python. The ctypes library provides C compatible data types, and it allows calling functions in

dynamic linked libraries or shared libraries, such as provided with NL5 DLL.

Setup. The nl5py package includes a required initialization file, __init__.py. Prior to using nl5py,

you will need to edit the __init__.py file to include the path to the appropriate library file for your

system.

Windows library file is nl5_dll.dll. Edit the path variable as appropriate to point to the library:

path = Path(r'C:\path\to\your\library\nl5_dll.dll')

Note that for Windows, the lower case ‘r’ is necessary to ensure that the backslash (‘\’) is correctly

interpreted. It is optional in the case of Linux or macOS.

Linux library file is nl5_dll.so. Edit the path variable as appropriate to point to the library:

path = Path(r'/path/to/your/library/nl5_dll.so')

macOS library file is nl5_dll.dylib. Edit the path variable as appropriate to point to the library:

path = Path(r'/path/to/your/library/nl5_dll.dylib')

Note that there are two different library files: for Intel processor (x64), and Silver processor (arm64).

The nl5py package may be placed in any location in the file system pointed to by the environment

variable PYTHONPATH. PYTHONPATH is used by Python to specify directories from which modules can be

imported. Please consult online resources if you are unsure of how to set PYTHONPATH.

The example Python scripts assume that the schematic file dll_example.nl5 is located in the working

directory. If you place it somewhere else in the file system, be sure to specify the path correctly when

you call NL5_Open.

Finally, the demo makes use of Python packages numpy and matplotlib. Please make sure that your

Python distribution has these packages installed.

 NL5 DLL User’s Manual

 33

Demo. Simple examples of the Python code dll_example.py can be found in the Python folder of NL5

DLL download package. The first one, dll_example.py, opens schematic file dll_example.nl5,

changes value of R1 in specified range, runs transient for each R1 value, reads transient data of trace

V(out), and displays results as a 3-D surface.

Here is schematic and results of transient simulation in NL5:

Here is a 3-D surface obtained in similar Python simulation performed with NL5 DLL:

 NL5 DLL User’s Manual

 34

Here is the code:

import required modules

import nl5py as nl5

import ctypes as ct

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

open schematic

ncir = nl5.NL5_Open(b'dll_example.nl5')

create trace handle

ntrace = nl5.NL5_GetTrace(ncir, b'V(out)')

create pointer to data

pd = ct.c_double()

initialize

R = np.logspace(-1, 1, 50)

Z = np.zeros((50, 100))

for k in range(50):

 # set R1 value

 nl5.NL5_SetValue(ncir, b'R1.R', R[k])

 # simulate for 10s

 nl5.NL5_Start(ncir)

 nl5.NL5_Simulate(ncir, 10)

 # read data

 for i in range(100):

 t = i * 0.1

 nl5.NL5_GetData(ncir, ntrace, t, pd)

 Z[k, i] = pd.value

close document

nl5.NL5_Close(ncir)

print(nl5.NL5_GetError())

plot a 3D Surface

X = np.linspace(1, 100, 100)

Y = np.linspace(1, 50, 50)

Y, X = np.meshgrid(X, Y)

formatting the figure

fig = plt.figure(figsize=(5, 5))

ax = fig.add_subplot(111, projection='3d')

ax.set_zlim(0, 20)

mycmap = plt.get_cmap('jet')

plt.gca().invert_xaxis()

plotting the surface

surf = ax.plot_surface(X, Y, Z, cmap=mycmap)

adding the colorbar

cb = plt.colorbar(surf)

plt.show()

 NL5 DLL User’s Manual

 35

Another example code dll_ac_example.py performs AC analysis of the same circuit. It changes the

value of R1 in specified range, reads AC data of trace V(out), and displays magnitude (in dB) as a 3-D

surface.

Here is schematic, and results of AC simulation in NL5:

Here is a 3-D surface obtained in similar Python simulation performed with NL5 DLL:

 NL5 DLL User’s Manual

 36

Here is the code:

import required modules

import nl5py as nl5

import ctypes as ct

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

open schematic

ncir = nl5.NL5_Open(b'dll_example.nl5')

create trace handle

ntrace = nl5.NL5_GetACTrace(ncir, b'V(out)')

ndata = nl5.NL5_GetACDataSize(ncir, ntrace)

create pointer to data

freq = ct.c_double()

mag = ct.c_double()

phase = ct.c_double()

initialize

R = np.logspace(-2, 1, 50)

Z = np.zeros((50, 100))

for k in range(50):

 # set R1 value

 nl5.NL5_SetValue(ncir, b'R1.R', R[k])

 # simulate AC

 nl5.NL5_CalcAC(ncir)

 # read data

 for t in range(100):

 nl5.NL5_GetACDataAt(ncir, ntrace, t, freq, mag, phase)

 Z[k, t] = 20.0*np.log10(mag.value)

close document

nl5.NL5_Close(ncir)

print(nl5.NL5_GetError())

plot a 3D Surface

X = np.linspace(1, 100, 100)

Y = np.linspace(1, 50, 50)

Y, X = np.meshgrid(X, Y)

formatting the figure

fig = plt.figure(figsize=(5, 5))

ax = fig.add_subplot(111, projection='3d')

ax.set_zlim(-60, 20)

mycmap = plt.get_cmap('jet')

plt.gca().invert_xaxis()

plotting the surface

surf = ax.plot_surface(X, Y, Z, cmap=mycmap)

adding the colorbar

cb = plt.colorbar(surf)

ax.view_init(45, 15)

plt.show()

 NL5 DLL User’s Manual

 37

Using DLL with SystemVerilog

NL5 DLL can be used for co-simulation with SystemVerilog digital simulators, where DLL functions

are being called through DPI – Direct Programming Interface.

Files

The following files can be used for interfacing DLL with SystemVerilog DPI:

- nl5_dll.dll (Windows)

- nl5_dll.lib (Windows)

- nl5_dll.so (Linux)

- nl5_sv.svh - header file for SystemVerilog code

- nl5_sv.c - “wrapper” C-code

- svdpi.h - header file for “wrapper” C-code

Using DLL

To use DLL with SystemVerilog code, link the project with appropriate DLL library file, and place

appropriate NL5 DLL file into the directory where it can be accessed. Also, include nl5_sv.svh header

file into Verilog code. This file contains prototypes of DLL functions.

Refer to the documentation of your SystemVerilog simulation tool for details on creating the project and

using DPI.

 NL5 DLL User’s Manual

 38

Using DLL with C-code “wrapper”

If DLL library file cannot be linked to the SystemVerilog project for any reason, NL5 DLL can be

accessed using provided “wrapper” C-code nl5_sv.c. Compile and link that code to the SystemVerilog

project. Please note that different tools may require their own specific header file svdpi.h. Refer to the

documentation of your SystemVerilog simulation tool for details on creating the project and using DPI.

Include nl5_sv.svh header file into SystemVerilog code: this file contains prototypes of DLL

functions.

Place DLL file into the directory where it can be accessed. Before calling any DLL functions first time,

DLL should be loaded into memory by calling NL5_OpenDLL function with appropriate dll file name as a

parameter. The function returns 0 if successful, or negative error code if failed. The following error

codes are currently used:

 int result = NL5_OpenDLL("nl5_dll.dll");

if(result == -1)

{

 // DLL not found. Handle the error here

 . . .

}

else if(result == -2)

{

 // Some DLL functions not found. Handle the error here

 . . .

}

else if(result == -3)

{

 // DLL already loaded. Handle the error here

 . . .

}

else

{

 // OK

}

Once DLL is successfully loaded, all DLL functions can be called.

 NL5 DLL User’s Manual

 39

Running co-simulation demo with Xilinx Vivado

Creating demo project

There are many ways of creating and configuring Vivado project. Please refer to Vivado Manual, or use

public on-line tutorials on Vivado for more information.

For this instructions, Vivado HLx Edition, v2017.4 (64-bit) was used.

To create a new project, open Vivado:

 NL5 DLL User’s Manual

 40

Select “Quick Start” / “Create Project”, Click “Next”

Project name: enter project name (“nl5_demo”), click “Next”:

 NL5 DLL User’s Manual

 41

Project type: click “Next”:

Default part: please note that list of parts will depend on your installation. Select Xilinx part or board,

click “Next”:

 NL5 DLL User’s Manual

 42

Click “Finish”

The project has been created; project directory is:

C:\Projects\vivado\nl5_demo

 NL5 DLL User’s Manual

 43

Creating library file

To create library file dpi.a, copy the following files from SystemVerilog directory of the NL5 DLL

installation package to Vivado temporary directory
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

nl5_sv.c

svdpi.h

In the Vivado Tcl Console command line, type:

xsc nl5_sv.c

For running NL5 DLL demo, copy new dpi.a file from
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

to C:\Projects\vivado\nl5_demo\nl5_demo.sim\sim_1\behav\xsim

as described in the next section.

 NL5 DLL User’s Manual

 44

Configuring and running demo

In the NL5 DLL installation package, go to SystemVerilog\Vivado\src directory, and copy the

following files into project directory C:\Projects\vivado\nl5_demo

nl5_demo.sv

nl5_sv.svh

Select “Project manager” / “Add Sources”:

Add Sources: select “Add or create design source”, click “Next”:

 NL5 DLL User’s Manual

 45

Add or Create Design Sources: click Add Files, select C:\Projects\vivado\nl5_demo

directory, select nl5_demo.sv and nl5_sv.svh files (using Ctrl key), click “OK”:

Click “Finish”:

 NL5 DLL User’s Manual

 46

Select “Project manager” / “Settings”:

Select “Project Settings” / “Simulation”, “Elaboration” tab, enter:

xsim.elaborate.xelab.more_options = -sv_lib dpi

 NL5 DLL User’s Manual

 47

Select “Simulation” tab, enter:

xsim.simulation.runtime = 1000ns

Click “OK”

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation”. An error

message will pop up:

Click “OK” two times. This step is required in order to force Vivado to create simulation directory, and

then copy required nl5 demo files into that directory.

In the NL5 DLL installation package, go to SystemVerilog\Vivado\sim directory, and copy the

following files into simulation directory
C:\Projects\vivado\nl5_demo\nl5_demo.sim\sim_1\behave\xsim

nl5_dll.dll

rc.nl5

Also, copy library file dpi.a, as described in ”Creating library file” section.

 NL5 DLL User’s Manual

 48

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation”.

After successful simulation, the results will be shown in the Waveform Window:

To see analog waveforms of the simulation, start NL5 Circuit Simulator, open nl5 file with simulation

results
C:\Projects\vivado\nl5_demo\nl5_demo.sim\sim_1\behav\xsim\result.nl5

and open transient window:

 NL5 DLL User’s Manual

 49

Demo circuit

A simple oscillator circuit with 3 inverters is used as a demo:

Digital part (Y1, Y2, Y3) of the circuit is disabled, since it will be simulated by SystemVerilog. Labels

“out”, “in_C”, and “in_R” are used for passing signals between analog and digital parts.

When SystemVerilog simulation is completed, the schematic is saved into the file result.nl5 along

with transient results. Start NL5 Circuit Simulator, and open result.nl5 to see analog waveforms in

details.

To run simulation with NL5 Circuit Simulator, enable digital part of the schematic, and run transient. To

enable/disable schematic, select part of the schematic, right-click on the selection, select “Enable” or

“Disable” from context menu.

 NL5 DLL User’s Manual

 50

III. DLL Functions

 NL5 DLL User’s Manual

 51

NL5_GetError

Prototype:

char* NL5_GetError()

Parameters:

No parameters

Returns:

Pointer to null-terminated ASCII character string

Description:

Returns text description of last execution error. If no error, returns ”OK”.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

 NL5 DLL User’s Manual

 52

NL5_GetInfo

Prototype:

char* NL5_GetInfo()

Parameters:

No parameters

Returns:

Pointer to null-terminated ASCII character string

Description

Returns information about DLL, such as version and date.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

 NL5 DLL User’s Manual

 53

NL5_GetLicense

Prototype:

int NL5_GetLicense(char* name)

Parameters:

char* name - pointer to null-terminated ASCII character string with NL5 license file name

Returns:

0 : valid license file with DLL license option found
<0 : error, or license does not have DLL option

Description

The function loads NL5 license file and checks if DLL license option is enabled. Call
NL5_GetError()after calling NL5_GetLicense()to get License ID, or error message.

 NL5 DLL User’s Manual

 54

NL5_Open

Prototype:

int NL5_Open(char* name)

Parameters:

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name

Returns:

>=0 : circuit handle
-1 : error

Description

Opens NL5 schematic file “name”.

Returns non-negative circuit handle, or -1 if file not found, cannot be open for any reason, or file and is
not DLL-enabled and contains too many components.

Circuit handle can be used as input parameter ncir for other DLL functions.

If file name does not have path specified, DLL will search for the file in the same directory where NL5
DLL is located.

 NL5 DLL User’s Manual

 55

NL5_Close

Prototype:

int NL5_Close(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Close schematic with handle ncir. Schematic information will be removed from DLL, handle ncir

cannot be used anymore.

 NL5 DLL User’s Manual

 56

NL5_Save

Prototype:

int NL5_Save(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Save schematic with handle ncir into the same file.

Use this function to save schematic back to NL5 schematic file. You might want to save the schematic if
any modification of component parameters were made, IC (Initial Conditions) were saved, or if you want
to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the
schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save
with transient data” checkbox, and save schematic into the file.

 NL5 DLL User’s Manual

 57

NL5_SaveAs

Prototype:

int NL5_SaveAs(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name

Returns:

0 : OK
-1 : error

Description

Save schematic with handle ncir into a new schematic file.

Use this function to save schematic into a new NL5 schematic file. You might want to save the
schematic if any modification of component parameters were made, IC (Initial Conditions) were saved,
or if you want to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the
schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save
with transient data” checkbox, and save schematic into the file.

 NL5 DLL User’s Manual

 58

NL5_GetValue

Prototype:

int NL5_GetValue(int ncir, char* name, double* v)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name

double* v - pointer to value variable

Returns:

0 : OK
-1 : error

Description

Returns double value of component parameter.

name is component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”).

See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank

- “On/Off” : 1 for “On”, 0 for “Off”

- “High/Low” : 1 for “High”, 0 for “Low”

- “Yes/No” : 1 for “Yes”, 0 for “No”

- text list : parameter number in the list (zero based)

Other parameter types are not supported.

 NL5 DLL User’s Manual

 59

NL5_SetValue

Prototype:

int NL5_SetValue(int ncir, char* name, double v)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name

double v - parameter value

Returns:

0 : OK
-1 : error

Description

Sets value of parameter to v.

name is component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”).

See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Off” : 1 for “On”, 0 for “Off”

- “High/Low” : 1 for “High”, 0 for “Low”

- “Yes/No” : 1 for “Yes”, 0 for “No”

- text list : parameter number in the list (zero based)

Other parameter types are not supported.

 NL5 DLL User’s Manual

 60

NL5_GetText

Prototype:

int NL5_GetText(int ncir, char* name, char* text, int length)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name

char* text - pointer to null-terminated ASCII character string with parameter text

int length – max number of characters allowed to return into text, including trailing null

Returns:

>=0 : number of characters returned into text, including trailing null.

-1 : error

Description

Returns text (parameter value in text format) of component parameter or model into character string
text.

name is component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”). For

component model, use <component >.model format (“V1.model”). See NL5 Circuit Simulator Manual

for details (User Interface/Data format/Names).

Size of character string text should be not less than length.

Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

 NL5 DLL User’s Manual

 61

NL5_SetText

Prototype:

int NL5_SetText(int ncir, char* name, char* text)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name

char* text - pointer to null-terminated ASCII character string with parameter text

Returns:

0 : OK

-1 : error

Description

Sets text of component parameter name or model to text.

name is component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”). For

component model, use <component >.model format (“V1.model”). See NL5 Circuit Simulator Manual

for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=‘.

 NL5 DLL User’s Manual

 62

NL5_GetParam

Prototype:

int NL5_GetParam(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name

Returns:

>=0 : parameter handle
 -1 : error

Description

name is component parameter name in the format <component >.<parameter> (“R1.R”, “V1.V”).

See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns non-negative handle of component parameter, or -1 if parameter not found.

 NL5 DLL User’s Manual

 63

NL5_GetParamValue

Prototype:

int NL5_GetParamValue(int ncir, int npar, double* v)

Parameters:

int ncir - circuit handle

int npar - parameter handle

double* v - pointer to the variable

Returns:

0 : OK
-1 : error

Description

Returns double value of parameter with handle npar into variable v. Parameter handle npar should

be obtained by function NL5_GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank

- “On/Off” : 1 for “On”, 0 for “Off”

- “High/Low” : 1 for “High”, 0 for “Low”

- “Yes/No” : 1 for “Yes”, 0 for “No”

- text list : parameter number in the list (zero based)

Other parameter types are not supported.

 NL5 DLL User’s Manual

 64

NL5_SetParamValue

Prototype:

int NL5_SetParamValue(int ncir, int npar, double v)

Parameters:

int ncir - circuit handle

int npar - parameter handle

double v - parameter value

Returns:

0 : OK
-1 : error

Description

Sets value of parameter with handle npar to v. Parameter handle npar should be obtained by function

NL5_GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Off” : 1 for “On”, 0 for “Off”

- “High/Low” : 1 for “High”, 0 for “Low”

- “Yes/No” : 1 for “Yes”, 0 for “No”

- text list : parameter number in the list (zero based)

Other parameter types are not supported.

 NL5 DLL User’s Manual

 65

NL5_GetParamText

Prototype:

int NL5_GetParamText(int ncir, int npar, char* text, int length)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text

int length – max number of characters allowed to return into text, including trailing null

Returns:

>=0 : number of characters returned into text, including trailing null.

-1 : error

Description

Copies text (parameter value in text format) of component parameter with handle npar into character

string text.

Parameter handle npar should be obtained by function NL5_GetParam.

Size of character string text should be not less than length.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

 NL5 DLL User’s Manual

 66

NL5_SetParamText

Prototype:

int NL5_SetParamText(int ncir, int npar, char* text)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text

Returns:

0 : OK

-1 : error

Description

Sets text of component parameter with handle npar to text. Parameter handle npar should be

obtained by function NL5_GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=‘.

 NL5 DLL User’s Manual

 67

NL5_GetTrace

Prototype:

int NL5_GetTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name

Returns:

>=0 : trace handle

-1 : error

Description

name is the trace name in the format used by NL5 Circuit Simulator. See NL5 Circuit Simulator Manual

for details (User Interface/Data format/Names/Trace).

Returns non-negative trace handle, or -1 if trace name not found.

 NL5 DLL User’s Manual

 68

NL5_AddVTrace

Prototype:

int NL5_AddVTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

>=0 : trace handle

-1 : error

Description

Creates voltage trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or voltage trace is not supported

by the component.

 NL5 DLL User’s Manual

 69

NL5_AddITrace

Prototype:

int NL5_AddITrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

>=0 : trace handle

-1 : error

Description

Creates current trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or current trace is not supported

by the component.

 NL5 DLL User’s Manual

 70

NL5_AddPTrace

Prototype:

int NL5_AddPTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

>=0 : trace handle

-1 : error

Description

Creates power trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or power trace is not supported by

the component.

 NL5 DLL User’s Manual

 71

NL5_AddVarTrace

Prototype:

int NL5_AddVarTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with schematic variable name

Returns:

>=0 : trace handle

-1 : error

Description

Creates trace for schematic variable name.

Returns non-negative trace handle, or -1 if variable name not found.

 NL5 DLL User’s Manual

 72

NL5_AddFuncTrace

Prototype:

int NL5_AddFuncTrace(int ncir, char* text)

Parameters:

int ncir - circuit handle

char* text - pointer to null-terminated ASCII character string with function text

Returns:

>=0 : trace handle

-1 : error

Description

Creates trace of function text. See NL5 Circuit Simulator Manual for details on function trace

(Transient Analysis/Transient Data/Traces/Function trace).

Returns non-negative trace handle, or -1 if error occurred.

 NL5 DLL User’s Manual

 73

NL5_AddDataTrace

Prototype:

int NL5_AddDataTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name

Returns:

>=0 : trace handle

-1 : error

Description

Creates trace of Data type for post-processing data.

Returns non-negative trace handle, or -1 if error occurred.

 NL5 DLL User’s Manual

 74

NL5_DeleteTrace

Prototype:

int NL5_DeleteTrace(int ncir, int ntrace)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

Returns:

0 : OK
-1 : error

Description

Deletes traces with trace handle ntrace.

 NL5 DLL User’s Manual

 75

NL5_GetInput

Prototype:

int NL5_GetInput(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

>=0 : input handle
-1 : error

Description

name is component name.

The following component types are supported:

- Label
- Voltage source
- Current source

Returns non-negative input handle or -1 if component not found, or is not supported as an input.
The model of the component will be automatically changed to ‘V” (constant voltage source) or “I”
(constant current source).

 NL5 DLL User’s Manual

 76

NL5_SetInputValue

Prototype:

int NL5_SetInputValue(int ncir, int nin, double v)

Parameters:

int ncir - circuit handle

int nin - input handle

double v - parameter value

Returns:

0 : OK
-1 : error

Description

Sets voltage or current of the input with handle npar to v. Input handle nin should be obtained by

function NL5_GetInput.

Returns -1 if input handle nin is not valid.

 NL5 DLL User’s Manual

 77

NL5_SetInputLogicalValue

Prototype:

int NL5_SetInputLogicalValue(int ncir, int nin, int i)

Parameters:

int ncir - circuit handle

int nin - input handle

int i - parameter value

Returns:

0 : OK
-1 : error

Description

Sets voltage or current of the input with handle npar to:

- low logical level value, if i == 0

- high logical level value, if i != 0

Logical levels are set up in the NL5 Transient Settings, Advanced settings, Transient tab.

Returns -1 if input handle nin is not valid.

 NL5 DLL User’s Manual

 78

NL5_GetOutput

Prototype:

int NL5_GetOutput(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

>=0 : input handle
-1 : error

Description

name is label or component name

Returns non-negative output handle or -1 if component not found, or is not supported as an output.

 NL5 DLL User’s Manual

 79

NL5_GetOutputValue

Prototype:

int NL5_GetOutputValue(int ncir, int nout, double* v)

Parameters:

int ncir - circuit handle

int nout - output handle

double* v - pointer to the variable

Returns:

0 : OK
-1 : error

Description

Sets double value of voltage of output with handle nout into variable v.

Returns -1 if output handle nout is not valid.

 NL5 DLL User’s Manual

 80

NL5_GetOutputLogicalValue

Prototype:

int NL5_GetOutputValue(int ncir, int nout, int* i)

Parameters:

int ncir - circuit handle

int nout - output handle

int* i - pointer to the variable

Returns:

0 : OK
-1 : error

Description

Sets int value of logical level of output with handle nout into variable i:

- 0, if output voltage is below logical threshold
- 1, if output voltage is equal or above logical threshold

Logical threshold is set up in the NL5 Transient Settings, Advanced settings, Transient tab.

Returns -1 if output handle nout is not valid.

 NL5 DLL User’s Manual

 81

NL5_SetStep

Prototype:

int NL5_SetStep(int ncir, double step)

Parameters:

int ncir - circuit handle

double step – calculation step

Returns:

0 : OK
-1 : error

Description

Sets maximum calculation step size. If this function was not called, an original calculation step from
schematic file will be used (Transient/Settings/”Calculation step”).

 NL5 DLL User’s Manual

 82

NL5_SetTimeout

Prototype:

int NL5_SetTimeout(int ncir, int t)

Parameters:

int ncir - circuit handle

int t – time-out, seconds

Returns:

0 : OK
-1 : error

Description

Sets maximum time allowed for calculating one simulation step. If this function was not called, a default
time-out value is used (0). If time-out is equal to zero, time-out detection is disabled.
If time-out occurred due to unresolved switching iterations, the error message will indicate a component
which started switching process. Time-out may also occur due to infinite while/do/for loops of C-code.

 NL5 DLL User’s Manual

 83

NL5_GetSimulationTime

Prototype:

int NL5_GetSimulationTime(int ncir, double* t)

Parameters:

int ncir - circuit handle

double* t - pointer to time variable

Returns:

0 : OK
-1 : error

Description

Sets t to the current value of internal simulation_time variable.

 NL5 DLL User’s Manual

 84

NL5_Start

Prototype:

int NL5_Start(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Start simulation.

The function resets internal simulation_time variable to 0, initializes circuit components, erases

existing simulation data, and calculates initial state of the circuit according to specified Initial Conditions.
When function returns, the simulation data consists of circuit state at t=0.

The function should be called first to start simulation from t=0, prior to calling any simulation functions.

However, calling NL5_Start is not required. It will be executed automatically if any of simulation

functions is called, and simulation has not been performed yet.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

 NL5 DLL User’s Manual

 85

NL5_Simulate

Prototype:

int NL5_Simulate(int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds

Returns:

0 : OK
-1 : error

Description

Performs transient simulation at least for requested interval.

The function does not change simulation step in order to stop exactly at the end of requested
interval, so the time of the last calculated data may exceed requested end time. When next

simulation function is called, simulation will be continued with simulation step equal to the last simulation
step.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

 NL5 DLL User’s Manual

 86

NL5_SimulateInterval

Prototype:

int NL5_SimulateInterval(int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds

Returns:

0 : OK
-1 : error

Description

Performs transient simulation exactly for requested interval.

The function may adjust (decrease) simulation step in order to stop exactly at the end of requested
interval. When next simulation function is called, simulation step will be restored, and a new linear

range will be started.

Please note that if requested interval is less than simulation step, NL5 may not be able to decrease
simulation step exactly as needed, and actual simulated interval will be longer than requested. To avoid
that, it is recommended to use simulation step at least not greater than desired intervals.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

 NL5 DLL User’s Manual

 87

NL5_SimulateStep

Prototype:

int NL5_SimulateStep(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Performs one step of transient simulation.

When the function returns, simulation_time variable is set to the time of last calculated data.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

 NL5 DLL User’s Manual

 88

NL5_SaveIC

Prototype:

int NL5_SaveIC(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Saves current component states into components’ Initial Conditions.

The function does not save schematic into schematic file.

 NL5 DLL User’s Manual

 89

NL5_GetDataSize

Prototype:

int NL5_GetDataSize(int ncir, int ntrace)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

Returns:

>=0 : data size (number of data points)

-1 : error

Description

Returns non-negative number of data points of the trace with trace handle ntrace or -1 if error occurred.

 NL5 DLL User’s Manual

 90

NL5_GetDataAt

Prototype:

int NL5_GetDataAt(int ncir, int ntrace, int n, double* t, double* data)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

int n – data point index

double* t – pointer to time variable

double* data – pointer to value variable

Returns:

0 : OK
-1 : error

Description

Returns time and data of data point with index n. Data index is zero-based.

Returns -1 if index is less than zero, or greater or equal to data size.

 NL5 DLL User’s Manual

 91

NL5_GetLastData

Prototype:

int NL5_GetLastData(int ncir, int ntrace, double* t, double* data)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

double* t – pointer to time variable

double* data – pointer to data variable

Returns:

0 : OK
-1 : error

Description

Sets t and data to the time and data value of the last data point.

Returns -1 if there is no data.

 NL5 DLL User’s Manual

 92

NL5_GetData

Prototype:

int NL5_GetData(int ncir, int ntrace, double t, double* data)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

double t – time

double* data – pointer to data variable

Returns:

0 : OK
-1 : error

Description

Sets data to the data value at time t. The data is calculated as linear interpolation between two data

points, with time below and above requested time.

Returns -1 if t is less than time of first data point, or greater than the time of last data point.

 NL5 DLL User’s Manual

 93

NL5_AddData

Prototype:

int NL5_AddData(int ncir, int ntrace, double t, double data)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

double t – time

double data – data

Returns:

0 : OK
-1 : error

Description

Add data value data at time t to specified trace.

 NL5 DLL User’s Manual

 94

NL5_DeleteData

Prototype:

int NL5_DeleteData(int ncir, int ntrace)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

Returns:

0 : OK
-1 : error

Description

Delete all data of specified trace.

 NL5 DLL User’s Manual

 95

NL5_SaveData

Prototype:

int NL5_SaveData(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 data file name

Returns:

0 : OK
-1 : error

Description

Save transient data of the schematic with handle ncir into the data file.

Use this function to save transient data into the file in NL5 data format. Default file extension is “nlt”.
The data can be loaded into NL5 and shown on the transient graph.

 NL5 DLL User’s Manual

 96

NL5_SetAC

Prototype:

int NL5_SetAC(int ncir, double from, double to, int points, int scale)

Parameters:

int ncir - circuit handle

double from - start frequency

double to - end frequency

int points - number of frequency points

int scale - frequency scale: 0 – logarithmic, 1 - linear

Returns:

0 : OK
-1 : error

Description

Set AC simulation parameters.

 NL5 DLL User’s Manual

 97

NL5_SetACSource

Prototype:

int NL5_SetAC(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name

Returns:

0 : OK
-1 : error

Description

Set component name as a source for AC simulation.

 NL5 DLL User’s Manual

 98

NL5_CalcAC

Prototype:

int NL5_CalcAC(int ncir)

Parameters:

int ncir - circuit handle

Returns:

0 : OK
-1 : error

Description

Perform AC simulation with simulation parameters specified in the schematic file. Only “Linearize
schematic” method is supported.

 NL5 DLL User’s Manual

 99

NL5_GetACTrace

Prototype:

int NL5_GetACTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name

Returns:

>=0 : trace handle

-1 : error

Description

name is AC trace name in the format used by NL5 Circuit Simulator. See NL5 Circuit Simulator Manual

for details (User Interface/Data format/Names/Trace).

Returns non-negative trace handle, or -1 if trace name not found.

 NL5 DLL User’s Manual

 100

NL5_GetACDataSize

Prototype:

int NL5_GetACDataSize(int ncir, int ntrace)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

Returns:

>=0 : data size (number of AC data points)

-1 : error

Description

Returns non-negative number of AC data points of the trace with trace handle ntrace or -1 if error

occurred.

 NL5 DLL User’s Manual

 101

NL5_GetACDataAt

Prototype:

int NL5_GetACDataAt(int ncir, int ntrace, int n, double* f, double* mag,

double* phase)

Parameters:

int ncir - circuit handle

int ntrace – trace handle

int n – data point index

double* f – pointer to frequency variable

double* mag – pointer to magnitude variable

double* phase – pointer to phase variable

Returns:

0 : OK
-1 : error

Description

Returns frequency (Hz), magnitude, and phase (radians) values of data point with index n. Data index is

zero-based.

Returns -1 if index is less than zero, or greater or equal to data size.

 NL5 DLL User’s Manual

 102

NL5_SaveACData

Prototype:

int NL5_SaveACData(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 data file name

Returns:

0 : OK
-1 : error

Description

Save AC data of the schematic with handle ncir into the data file.

Use this function to save transient data into the file in NL5 data format. Default file extension is “nlf”.
The data can be loaded into NL5 and shown on the AC graph.

 NL5 DLL User’s Manual

 103

IV. Attachments

 NL5 DLL User’s Manual

 104

END USER LICENSE AGREEMENT

This End-User License Agreement ("EULA", “Agreement”) is a legal agreement between you ("you",

either an individual or a single entity) and Sidelinesoft, LLC (“Sidelinesoft”) for the NL5 Circuit

Simulator and NL5 DLL software ("the Software”, “the Software Product"), NL5 License (“the

Software License”), and accompanying documentation.

Ownership

The Software, any accompanying documentation, and all intellectual property rights therein are owned

by Sidelinesoft. The Software is licensed, not sold. The Software is protected by copyright laws and

treaties, as well as laws and treaties related to other forms of intellectual property. The Licensee's license

to download, use, copy, or change the Software Product is subject to these rights and to all the terms and

conditions of this Agreement.

Acceptance

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY

DOWNLOADING THE SOFTWARE PRODUCT OR BY INSTALLING, USING, OR COPYING

THE SOFTWARE PRODUCT. YOU MUST AGREE TO ALL OF THE TERMS OF THIS

AGREEMENT BEFORE YOU WILL BE ALLOWED TO DOWNLOAD THE SOFTWARE

PRODUCT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, YOU

MUST NOT INSTALL, USE, OR COPY THE SOFTWARE PRODUCT.

License Grant

Sidelinesoft grants you a right to download, install, and use unlimited copies of the Software Product.

Without a Software License, the Software operates as a Demo version, with limited number of

components in the schematic, and possibly some functional and performance limitations. Several types

of Full-Function Software Licenses can be obtained at Software Product website (nl5.sidelinesoft.com).

Terms and conditions of each type of Full-Function Software License are available at the website and

are subject to change without notice.

Restrictions on Reverse Engineering, Decompilation, and Disassembly.

You may not decompile, reverse-engineer, disassemble, or otherwise attempt to derive the source code

for the Software Product.

Restrictions on Alteration

You may not modify the Software Product or create any derivative work of the Software Product or its

accompanying documentation without obtaining permission of Sidelinesoft. Derivative works include

but are not limited to translations. You may not alter any files or libraries in any portion of the Software

Product.

Consent to Use of Data

Sidelinesoft may ask for your permission to collect and use technical information gathered as part of the

product support services provided to you, if any, related to the Software. Sidelinesoft may use this

information solely to improve the Software or to provide customized services to you and will not

disclose this information in a form that personally identifies you.

Disclaimer of Warranties and Limitation of Liability

UNLESS OTHERWISE EXPLICITLY AGREED TO IN WRITING BY SIDELINESOFT,

SIDELINESOFT MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, IN FACT OR IN

LAW, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF

http://nl5.sidelinesoft.com/

 NL5 DLL User’s Manual

 105

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OTHER THAN AS SET

FORTH IN THIS AGREEMENT.

Sidelinesoft makes no warranty that the Software Product will meet your requirements or operate under

your specific conditions of use. Sidelinesoft makes no warranty that operation of the Software Product

will be secure, error free, or free from interruption. YOU MUST DETERMINE WHETHER THE

SOFTWARE PRODUCT SUFFICIENTLY MEETS YOUR REQUIREMENTS FOR SECURITY AND

UNINTERRUPTABILITY. YOU BEAR SOLE RESPONSIBILITY AND ALL LIABILITY FOR ANY

LOSS INCURRED DUE TO FAILURE OF THE SOFTWARE PRODUCT TO MEET YOUR

REQUIREMENTS. UNDER NO CIRCUMSTANCES SHALL SIDELINESOFT BE LIABLE TO YOU

OR ANY OTHER PARTY FOR INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL,

PUNITIVE, OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOST REVENUES OR

PROFITS OR LOSS OF BUSINESS) RESULTING FROM THIS AGREEMENT, OR FROM THE

PERFORMANCE, INSTALLATION, USE OR INABILITY TO USE THE SOFTWARE PRODUCT,

WHETHER DUE TO A BREACH OF CONTRACT, BREACH OF WARRANTY, OR THE

NEGLIGENCE OF SIDELINESOFT OR ANY OTHER PARTY, EVEN IF SIDELINESOFT IS

ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT

THAT THE APPLICABLE JURISDICTION LIMITS SIDELINESOFT'S ABILITY TO DISCLAIM

ANY IMPLIED WARRANTIES, THIS DISCLAIMER SHALL BE EFFECTIVE TO THE

MAXIMUM EXTENT PERMITTED.

Limitation of Remedies and Damages

Your remedy for a breach of this Agreement or of any warranty included in this Agreement is the

correction or replacement of the Software Product. Selection of whether to correct or replace shall be

solely at the discretion of Sidelinesoft. Any claim must be made within the applicable warranty period.

All warranties cover only defects arising under normal use and do not include malfunctions or failure

resulting from misuse, abuse, neglect, alteration, improper installation, or a virus. All limited warranties

on the Software Product are granted only to you and are non-transferable. You agree to indemnify and

hold Sidelinesoft harmless from all claims, judgments, liabilities, expenses, or costs arising from your

breach of this Agreement and/or acts or omissions.

Severability

If any provision of this Agreement shall be held to be invalid or unenforceable, the remainder of this

Agreement shall remain in full force and effect. To the extent any express or implied restrictions are not

permitted by applicable laws, these express or implied restrictions shall remain in force and effect to the

maximum extent permitted by such applicable laws.

Termination

This Agreement is effective until terminated. Without prejudice to any other rights, Sidelinesoft may

terminate this Agreement if you fail to comply with the terms and conditions of this Agreement. In such

event, you must destroy all copies of the Software License.

Governing Law, Dispute Resolution

This Agreement is governed by the laws of the State of Colorado, U.S.A., without regard to its choice of

law principles to the contrary.

Contact Information.

Any inquiries regarding this Agreement or the Software may be addressed to Sidelinesoft at the

Software Product website (nl5.sidelinesoft.com).

http://nl5.sidelinesoft.com/

 NL5 DLL User’s Manual

 106

The end

	I. Introduction
	What is NL5 DLL
	Version
	Files
	License

	II. Using DLL
	Functions
	Function parameters
	Function result
	Handles

	Using DLL
	Error message
	DLL information
	License
	Schematic
	Parameters
	Traces
	Co-simulation
	Inputs/Outputs
	Transient simulation
	Simulation data
	Data post-processing
	AC simulation

	Using DLL with MATLAB
	Using DLL with Python
	Using DLL with SystemVerilog
	Files
	Using DLL
	Using DLL with C-code “wrapper”

	Running co-simulation demo with Xilinx Vivado
	Creating demo project
	Creating library file
	Configuring and running demo
	Demo circuit

	III. DLL Functions
	NL5_GetError
	NL5_GetInfo
	NL5_GetLicense
	NL5_Open
	NL5_Close
	NL5_Save
	NL5_SaveAs
	NL5_GetValue
	NL5_SetValue
	NL5_GetText
	NL5_SetText
	NL5_GetParam
	NL5_GetParamValue
	NL5_SetParamValue
	NL5_GetParamText
	NL5_SetParamText
	NL5_GetTrace
	NL5_AddVTrace
	NL5_AddITrace
	NL5_AddPTrace
	NL5_AddVarTrace
	NL5_AddFuncTrace
	NL5_AddDataTrace
	NL5_DeleteTrace
	NL5_GetInput
	NL5_SetInputValue
	NL5_SetInputLogicalValue
	NL5_GetOutput
	NL5_GetOutputValue
	NL5_GetOutputLogicalValue
	NL5_SetStep
	NL5_SetTimeout
	NL5_GetSimulationTime
	NL5_Start
	NL5_Simulate
	NL5_SimulateInterval
	NL5_SimulateStep
	NL5_SaveIC
	NL5_GetDataSize
	NL5_GetDataAt
	NL5_GetLastData
	NL5_GetData
	NL5_AddData
	NL5_DeleteData
	NL5_SaveData
	NL5_SetAC
	NL5_SetACSource
	NL5_CalcAC
	NL5_GetACTrace
	NL5_GetACDataSize
	NL5_GetACDataAt
	NL5_SaveACData

	IV. Attachments
	END USER LICENSE AGREEMENT

