<d NL5 DLL
User’'s Manual

Ver.3.12

EY NL5 DLL User’s Manual

VERSION

NL5 DLL User’s Manual version 3.12.19, 04/24/2024
The latest version of User’s Manual can be found at sidelinesoft.com/nl5.

LIMITED LIABILITY

NLS DLL, together will all accompanying materials, is provided on a “as is” basis, without
warranty of any kind. The author makes no warranty, either expressed, implied, or stationary,
including but not limited to any implied warranties of merchantability or fitness for any purpose.
In no event will the author be liable to anyone for direct, incidental or consequential damages or
losses arising from use or inability to use NL5 DLL.

COPYRIGHTS
© 2024, A.Smirnov, Sidelinesoft LLC. The software and User’s Manual are copyrighted. No

portion of this Manual can be translated or reproduced for commercial purpose without the
express written permission from the copyright holder.

- ¢

sidelinesoft

Microsoft, Windows, and Microsoft Visual C++ are registered trademarks of Microsoft Corporation. MATLAB is a
registered trademark of The MathWorks, Inc. PYTHON is a registered trademark of the Python Software Foundation.
Borland C++ Builder is a registered trademark of Borland Corporation. Verilog is a registered trademark of Cadence
Design Systems. Xilinx and Vivado are registered trademarks of Xilinx.

https://sidelinesoft.com/nl5/

EY NL5DLL User’s Manual

Table of Contents

L. INEFOAUCTION ... e 5
WAL IS NS DL 1ttt bbb bbbttt bbbt b e 6
=T 157 o] o SRS UUPSPROP 6
LSS 6
Lot oL ST POPROSR TSR 7

L USING DL L. et 8

LU 1o 1 o] OSSP 9
FUNCEION PAIAMEBTEISttt iteete et sttt e et e et e e st e et e e seesae e ee e st e sbeeteaseesseesteeneeaseenteeneenneenes 9
T L] (T =TV] | PSP 9
[o U0] OSSPSR 10

USING DLt bbbt e bbb bt bt bt e e bbbttt neene s 11
(0] LT Y- Vo [RO RTPR 11
]I T o1 0] 0T L o OSSOSO 11
0TS -SSP 11
SCNEIMALIC ...ttt et e et e e sae e e te e sbe e e beesaeeebeesteeeteesreeanbeesreeereeas 12
o L2110 12] (<] SRR PRUPRTPIN 13
I (0= PSR RSRPRP 15
(@0 [101 F= U1 o o TSRS 16
INPUES/OULPULS ...kttt b e bbbt et e b e b bbb nne s 17
TranSIeNt SIMUIALION.eoiiiiiie ettt e e e s s e e sbeebeereesteeeeeneeras 18
SIMUIBLION UALAc.veiiiecee et e e te e s b e et e e sae e e beesteeebeesreesnbeesreeenneeas 22
Data POSE-PIOCESSING .. eevieeeeteeiteeteetiesteeste et e st e st e e e s esteebesreesbeesbeaseesseesteeseeaseesbeensesseesteenseaseesreeneeas 25
y N O 1121V LA o] o [OOSR 26

USING DLL WIth IMATLAB ..ottt bbbt et e et sbenbesbeenenneas 28

USING DLL WIth PYTRON ...t 32

Using DLL With SYStEMVErTIOQcc.ooviiiiiice e 37
LS ettt e e e e —e e b e e e —e e e e e teeabr e e teeaheeareeatreereeereeanns 37
USING DL ..ottt et e e be et e e ha e e be et e e aseebe e beestesaeesteeneeareenreentens 37
USING DLL With C-code “WIaPPeI™ciuiiuiiiiieieie ittt 38

Running co-simulation demo with XilinX Vivadocccocciiiiiiiiiieccece e 39
Creating JeIMO PrOJECT.eeuieieieeeeie sttt b bbbkt e e bbbt et b e s 39
Creating Hrary file ...t 43
Configuring and rUNNING DEMOoouiiiiiiiiiieie bbbttt b et 44
=T g (o T (ot U | SOOI SPP 49

[HL. DL FUNCHIONS ...ttt 50
IR 1wl o B OO 51
NLS5 GEEINEO ittt e re 52
IR 1wl T Y o TP 53
A TR T) o1 o 54
R O o= PSR PUOPU 55
R S T= T2 P 56

EY NL5 DLL User’s Manual

D RS T= Y N TP 57
NLS5 GEEVA LU ittt bbb 58
NLS5 S@EV AU ittt 59
NLD5 GEETEXE titiiiiiiii ittt bbb bbb 60
NLD5 SEETEXE ittt bbb 61
IR 1 e o= (R 62
NL5 GetParamValUe it 63
NL5 SetParamVallle .t bbb bbb bbb 64
NL5 GetParamTeXE it be s 65
NL5 SetParamTeXE wiiiiiiiic i bbb 66
IR € w1 =Y o T PP 67
NLS5 AdAVTIECE ittt bbb e b e bbb b e be b 68
I RN [I ot U 69
NLS5 AdAPTIECE ittt e b e bbb b e b e b e e ab e b e b b e b e b e be b 70
D RS R N e L A= a1 ot Y = 71
NLS5 AdAFUNCTIECE tiiiiiiiiiiis ittt b s bbb et be b 72
NLS5 AdADELATIECE ittt bbb bbb bbb b e b be b 73
NL5 Dl et @l LA C ittt bbbt b e b bbb 74
A R T o o) <2 i 75
NL5 SetINPUELVALUEC i bbb bbb 76
NL5 SetInputLogicalValue .. 77
NLS5 GELOULPUL tiviitiiiitisi i sbe s 78
NLS5 GetOULPULVALUE wiiiiiiiiiiii s bbb 79
NL5 GetOutputLogicalValu. . 80
NLD SEE ST @D ittt 81
NL5 SEETIMEOUL ittt bbb b 82
NL5 GetSimulationTime i 83
N5 SEATE trtuureuureeseessreeseeeseeeseesseessessseesseessesesaees e ss s es e e £ et 84
NL5 SimMULA T it 85
NL5 SimulateInterval. e 86
NLS5 SimuUlate@STeD it 87
RS T= T2 P 88
NLS5 GetDATASIZEu ittt 89
NL5_GetDataAt ... 90
NL5 GeELASEDA T ittt 91
NLD5 GEEDEEA tiriitiiitiitiiiiti it 92
NLS5 AdADEEA tiriiiiiiiiitiiiiite it be b 93
NL5 DELet@Data ittt bbb 94
NLD5 SAVEDAE A ciiiiiiiiitiiiiiii i bbb 95
NTo5 SEEAC couvermieessaeeesseesseeessseesssseeesseees e st a8 a2 8RR 8828888 96
I RS TN o O < U oo =R 97
R = T PP 98
IR o o G o= Y OO 99
NLS5 GetACDATASI ZE ittt bbb 100
NLS5 GEEACDATARL euurerureruressessesseessaesseressesssessseessesssaess st sssssesssasssesssassssssssesssasssssssssssssssnsssanees 101

EY NL5DLL

User’s Manual

NL5 SaveACData.....c..

V. Attachmentsccc.ocoovvn.....
END USER LICENSE AGREEMENT

EY NL5DLL User’s Manual

|. Introduction

EY NL5DLL User’s Manual

What is NL5 DLL

NL5 DLL is a 64-bit dynamic-linked library available for Windows, Linux, and macOS. It is included
in the NL5 Circuit Simulator package. NL5 DLL performs transient and AC simulation of circuits
created by NL5 Circuit Simulator, provides raw simulation data, allows modification of circuit
parameters, adding data traces, and some other operations through DLL API functions. It can be used as
an analog simulator which is started and controlled from other applications and tools (MATLAB,
Python, custom C/C++ code), and as an analog co-simulation tool working with digital simulation tools
(for example SystemVerilog simulators through DPI interface).

NL5 DLL users are supposed to be familiar with NL5 Circuit Simulator principle and operation. Please
refer to NL5 Manual and NL5 Reference for information.

Please use public resources or specific documentation for general information about dynamic-linked
libraries, SystemVerilog, and digital simulation tools.

Version
Current released Version and Revision of NL5 DLL is always the same as Version and Revision of NL5
Circuit Simulator. This guarantees full compatibility in terms of components, models, features, and

performance. However, there is nothing wrong in using different Versions/Revisions of DLL and NL5.

Current build of DLL can be different from NL5, due to possible DLL and NL5 specific fixes and
modifications.

NL5 DLL is distributed as part of NL5 complete package, which can be found at sidelinesoft.com/nl5.

NL5 DLL Ver.3 can open and simulate schematics created by NL5 Ver.2. When saved back into the file,
a schematic will be automatically converted to Ver.3 format and cannot be opened by NL5 Ver.2
anymore.

Files

The following files are distributed to customers:

- nl5 dll.h
- nl5 dll.1lib

- nl5 di1.d11 - Windows

- nl5 dll.so - Linux

- nl5 dll.dylib - macOS (x64 and arm64)

- wMaTLAB/ - demo files for MATLAB

- Ppython/ - demo files for Python

- systemvVerilog/ - supporting files for SystemVerilog

- systemVerilog/Vivado/ - supporting files for co-simulation with Vivado

https://sidelinesoft.com/nl5/

EY NL5 DLL User’s Manual

License

Without a license, NL5 DLL operates as a Demo version. Demo version has all full function features
available, however the total number of components in the schematic is limited to 20. For unlimited
number of components, NL5 DLL should use NL5 License.

EY NL5DLL User’s Manual

1. Using DLL

EY NL5DLL User’s Manual

Functions

Function parameters
The following parameter types are used in DLL functions:

int - 32-bit integer
double - 8-byte floating point
char* - pointer to null-terminated ASCII (1-byte) character string (character array)

Some functions return double Values through pointers to double variable (doublex) provided as a
parameter of the function.

Function result

Most of DLL functions return integer value: function result. If function result is negative, it is an error
code. Only error code -1 is currently used, however more error codes may be added in the future. It is
not recommended to continue DLL execution if error code was received, since it may result in DLL
crash.

If error code is returned, text description of the error can be obtained by 1.5 GetError function:

if (NL5 GetValue(ncir, "R1.R", &value) < 0)
{
printf ("$s", NL5 GetError()):;

}

In case of successful execution, some functions return 0, and some functions return non-negative integer
value, with the meaning depending on the function. For example, 1.5 open returns integer value: circuit
handle, n1.5_GetText returns number of characters placed into the character array, etc.:

int ncir = NL5 Open("rc.nl5");
if (ncir < 0)
{
printf ("$s", NL5 GetError()):;
}

EY NL5DLL User’s Manual

Functions N1.5_GetInfo and NL5 GetError return pointer to null-terminated ASCII character string:

char* str = NL5 GetInfo();
printf ("%s", str);

The content of that string is valid only until execution of the next DLL function: then it will be changed.
If the text requested by calling those functions is needed for the future use, it is user’s responsibility to
copy it to safe location.

Handles

Handle is an index of the object in the internal DLL objects list. Handle is non-negative integer value.
Some functions return handle as a function result. The handle referring to a specific object can be used
as a parameter for other functions, related to that object. Handles are used for circuits, component
parameters, inputs/outputs, and traces.

For example, function result of function N1.5_open is circuit handle. Once received, the handle can be
used as an ncir parameter for many other functions, such as N1.5 Simulate, NL5 GetValue,
NL5_GetParam,NLS_GetTrace,EKL

int ncir = NL5 Open("rc.nl5");
if(ncir < 0)
{

printf ("$s", NL5 GetError()):;
}

double r;
if (NL5 GetValue(ncir, "R1.R", &r) < 0)
{
printf ("$s", NL5 GetError()):;
}

10

EY NL5DLL User’s Manual

Using DLL

Error message

A general function which may be called after calling practically any other function is N1.5 GetError. It
returns text description of the error which might occur while executing previous function, or “ox” if
execution was successful:

if (NL5 GetValue(ncir, "R1.R", &value) < 0)

{
printf ("$s", NL5 GetError()):;

}
DLL information

A function you might want to call at DLL startup is N5 GetInfo. It returns information about DLL:
version and date:

char* str = NL5 GetInfo();
printf ("%s", str);

This information is useful for troubleshooting, so please provide it when submitting bug reports or other
requests.

License

If you have NL5 License with DLL option, call n1.5 cGetLicense function before performing
simulation. Specify path of the license nl5.nll file as a parameter of the function. Call NLS GetError
right after that to obtain License ID or text description of the error:

int err = NL5 GetlLicense("C://Projects/nl5/nl5.nll");
printf ("%d, %s", err, NL5 GetError());

Error code and text description of the error are useful for troubleshooting, so please provide it when
submitting bug reports or other requests.

Another way to use the license is placing the license file into the same folder as schematic file to be

simulated. If N5 GetLicense function was not called, then n1.5 open function will automatically try
to find and check the license.

11

EY NL5DLL User’s Manual

Schematic

To perform simulation, a schematic should be loaded into the DLL from a schematic “*.n15” file. Once
loaded, the schematic is stored in the DLL memory, and can be used for simulation. During simulation,
the circuit component parameters can be modified by DLL, and simulated data will be saved as a traces.
A modified schematic with simulation data can be saved back into the schematic file.

To load schematic into DLL use NL5_open function. If file name does not have a path, DLL will look
for a file in the directory where DLL is located. The function returns non-negative circuit handle ncir,
which will be used in other DLL functions to identify the circuit:

int ncir = NL5 Open("rc.nld");
if (ncir < 0)
{
printf ("$s", NL5 GetError()):;

}

If schematic file could not be loaded for any reason, a negative error code is returned. Also, an error
occurs if requested file consists of too many components (currently 10) and is not DLL-enabled. Call
NL5 GetError function to get text description of the error.

You can load several circuits at once by calling N1.5 open: a unique circuit handle will be returned for
each circuit. If circuit is not needed anymore, it can be closed by n1.5 c1ose function, however closing
the circuit is not required.

The circuit can be saved back to the same schematic file by calling N5 _save, or to a new file by
calling n1.5_saveas functions:

int ncir = NL5 Open("rc.nl5");

NL5 SetValue (ncir, "R1.R", 123.456);
NL5 SaveAs (ncir, "rc new.nl5");

NL5 Close(ncir);

Use these functions to save schematic back to the file if any modification of component parameters were
made by DLL, IC (Initial Conditions) were saved, or if you want to save schematic with obtained
simulation and post-processing data.

To save schematic with transient and/or AC data, load schematic file in NL5, go to

Schematic/Settings/Save options, and enable Save with transient data and/or Save with AC data
option.

12

EY NL5DLL User’s Manual

Parameters

DLL functions can access and modify component parameters. Parameters can be modified before
simulation is started, as well as between DLL simulation calls. This is similar to pausing NL5
simulation, changing the parameter, and continuing the simulation.

Please be aware that changing the parameter between DLL simulation calls will result in recalculating
the system matrix and switching to a new linear range of simulation. If parameters are being changed
often, it may affect simulation speed. To change the value of voltage or current source in a “continuous
manner”, use DLL input functions instead. Those functions will modify the value of the sources
keeping the simulation in the same linear range, which results in much more efficient and fast
simulation. Please note that source values defined and changed as an input will not be saved into
schematic file by N1L5 save and NL5_saveas finctions.

To specify parameter name in the function, use component parameter name in the format
<component>.<parameter> ("R1.R", "v1.v"). See NL5 Circuit Simulator Manual for details (User
Interface/Data format/Names).

There are two methods to access component parameters:

1. Direct.
2. Through parameter handle.

Direct method is an easiest one, however not optimal in terms of performance. To get component
parameter value, use N1L5 Getvalue function. It returns value into the variable of doub1e type. The
pointer to that variable is passed to the function as a parameter:

double wvalue;
NL5 GetValue (ncir, "R1.R", &value);

See Reference for explanation on working with different parameter types.

To set parameter value, use function NL5_Setvalue:

NL5 SetValue (ncir, "R1.R", 123.456);

To get/set parameter value represented as a text, use NL5 GetText and NL5_setText functions. These
functions are applicable to practically all parameter types, including numerical. If numerical parameter
is defined as a formula, those functions will get/set text of the formula:

char str[100];
NL5 SetText (ncir, "V1.Slope", "Linear");

NL5 GetText (ncir, "V1.Slope", str, 100);
// returns str = "Linear"

NL5 GetText (ncir, "RI1.R", str, 100);
// returns str = "1.23e-3"

NL5 SetText (ncir, "R2.R", "=R1.R*2");

NL5 GetText (ncir, "R2.R", str, 100);

13

EY NL5DLL User’s Manual

// returns str = "=R1.R*2"

These function can also be used to access and modify component model by using <component>.model
format:

NL5 GetText (ncir, "Vl.model", str, 100);
// returns str = "Pulse"

NL5 SetText (ncir, "Vl.model", "Sin");

Accessing parameters through parameter handle would be a better option if parameter is being
accessed at least several times. Using that method improves performance by parsing parameter name
and searching for required component and parameter only once while obtaining parameter handle.

Use N1.5 GetParam function to obtain the parameter handle first:

int nparam = NL5 GetParam(ncir, "R1.R");
if (nparam < 0))
{
printf ("%s", NL5 GetError()):;
}

Then use the parameter handle in functions NL5 GetParamvalue, NL5 SetParamValue,
NLS_GetParamText,andNLS_SetParamText:

NL5 SetParamValue (ncir, nparam, 1.0);
double r;
NL5 GetParamValue(ncir, nparam, &r);

14

EY NL5DLL User’s Manual

Traces

DLL will store simulation data for all traces specified in the schematic file. The data can be accessed
through the trace handle, obtained by N1.5 GetTrace function for transient trace, or NL5 GetACTrace
function for AC trace:

int ntrace = NL5 GetTrace(ncir, "V(R1)");
if (ntrace < 0))
{
printf ("%s", NL5 GetError()):;
}

A new trace for transient simulation can be added using functions NL5 AddvTrace, NL5 AddITrace,
NL5 AddPTrace, NL5 AddvarTrace, and NL5 AddFuncTrace. These functions return trace handle. In
the following example, a trace with voltage across resistor R1 is added:

int ntrace = NL5 AddVTrace (ncir, "R1");
if (ntrace < 0))
{

printf ("%$s", NL5 GetError()):;

}

To minimize memory consumption, or accelerate simulation, any trace can be deleted by
NL5_DeleteTracefunCﬁ0nZ

NL5 DeleteTrace(ncir, ntrace);

Please note that DLL does not calculate traces of Math type. Those traces are calculated only when
using GUI version of NL5.

A special trace of Data type can be used for post-processing (see Data post-processing section for
details),

15

EY NL5DLL User’s Manual

Co-simulation

NL5 DLL can be used for transient co-simulation with other tools, such as system-modeling, behavioral
modeling tools, or digital simulators. DLL will provide fast and reliable simulation of analog part of the
system. To provide better performance of co-simulation, the following system structure is suggested.

The analog circuit has constant voltage or current sources (Label, VVoltage source, or Current source
components) specified as inputs. The voltage or current value of those inputs are modified by the other
tool before calling DLL simulation.

Also, the analog circuit has voltage or current meters (Label, VVoltmeter, or Amperemeter) specified as
outputs. When DLL simulation is completed for requested interval, the voltages/currents at specified
outputs are transferred to the other tool as a result of analog simulation.

Here is an example of an analog part of the system, with two inputs (Labels “in1~, “in2~)and two
outputs (Labels “out1”, “out2”):

NI R c2
- Ill
11

R2 C1 outl
&+ antt | |2 &
inl Ri
® A — b1 out2
]
inZ R3 + k1 #
i Wi

o1

R4

G —

Please note that input signals are modified in a “continuous” manner, keeping the simulation in the same
linear range, thus providing fast simulation. However, any component parameters can be modified using
parameter-based functions (for example n1.5 setvalue) as well: this will result in recalculating the
system matrix and switching to a new linear range of simulation.

If state of switch component needs to be modified, use voltage-controlled switch controlled by the input
voltage source.

Please note that DLL will not store all simulated data at specified outputs: only last simulated data at the
output is being stored until the next simulation call. However, DLL will still store data of all traces,
specified in the circuit file, or added by calling DLL function. When the circuit is saved back into
schematic file, the simulated data of those traces will be saved too, if “Save with transient data” option is
set in the schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select
“Save with transient data” checkbox, and save schematic into the file.

Use inputs/outputs DLL functions to specify inputs and outputs for co-simulation.

16

EY NL5DLL User’s Manual

Inputs/Outputs
Inputs/outputs can be accessed through the input/output handle.

Inputs. Call NL5_GetInput function to specify the input. 3 types of components can serve as an input:

Label component;
Voltage source component (V);
Current source component ().

Provide the label/component name as a parameter of the function. The function returns non-negative
integer value: input handle:

int nin = NL5 GetInput (ncir, "inl");
if(nin < 0))
{

printf ("$s", NL5 GetError()):;

}

Use the handle and a desired source value to set input voltage/current by N5 setInputvalue function:
int nin = NL5 GetInput (ncir, "inl");
NL5 SetInputValue(ncir, nin, 10.0);

Outputs. Call n1.5_cetoutput function to specify the output. 3 types of components can serve as an
output:

- Label component;
- Voltmeter (V);
- Amperemeter (A).

Provide the label/component name as a parameter of the function. The function returns non-negative
integer value: output handle:

int nout = NL5 GetOutput (ncir, "outl");
if (nout < 0))

{
printf ("%s", NL5 GetError());

}

Use the handle and a pointer to the double variable to obtain output voltage by N1.5 Getoutputvalue
function:

int nout = NL5 GetOutput (ncir, "outl");
double v;
NL5 GetOutputValue (ncir, nout, &v);

Typically, N1.5 setTnputvalue functions should be called for each specified input before calling DLL
simulation function, and N1.5_Getoutputvalue functions should be called for each specified output after

17

EY NL5DLL User’s Manual

simulation function returns. However, those functions can be called any time. Input functions can be
called only when input value, changed, and output functions can be called only when output value is
needed.

Transient simulation

Transient simulation is performed with simulation step defined in the schematic file (see NL5
transient settings: Transient/Settings/Calculation step). If needed, the step can be modified any time by
NL5 Setstep function:

double step = 1.0e-6;
NL5 SetStep(ncir, step);

To prevent DLL from being “stuck” due to erroneous code of C-code component (infinite while/do/for
loop), or inability to resolve states of piece-wise linear components, a simulation time-out can be set
up using function NL5 _SetTimeout:

int time out = 3;
NL5 GetTimeout (ncir, time out);

If simulation time of one transient step exceeds the time-out value (in seconds), the simulation will stop
with error message. Time-out equal to zero disables time-out detection.

DLL keeps track of current simulation time in the internal simulation time variable. When
simulation function is called, simulation is continued for requested interval starting from current
simulation time.Current simulation time value can be obtained by NL5 GetsSimuationTime
function:

double current time;
NL5 GetSimulationTime (ncir, ¤t time);

To start simulation, call 15 _start function. It resets simulation time t0 0, initializes circuit
components, erases existing simulation data, and calculates initial state of the circuit according to
specified Initial Conditions. This function should be called first to start simulation from t=0, prior to
calling any simulation functions. When n15_start returns, the simulation data consists of circuit state
at t=0. The simulation data at t=0 can be obtained by data-related functions described later.

However, calling N5 start is not required. It will be executed automatically if any of simulation
functions is called, while simulation has not been started yet.

After simulation is started, there are three methods of performing simulation:
1. Simulate;
2. Simulate interval;

3. Simulate step.

You can use just one method during all simulation, or any combination in any order.

18

EY NL5DLL User’s Manual

Simulate method is performed by n1.5_simulate function, and it runs simulation for requested
interval. The function does not change simulation step in order to stop exactly at the end of requested
time, so the time of the last calculated data may exceed requested end time. When next simulation
function is called, simulation will be continued with simulation step equal to the last simulation step.

Here is an example of two consecutive calls of N5 _simulate function. The first call was made at t =
3s (not shown on the graph), with interval = 3s:

NL5 Simulate(ncir, 3.0);

Due to selected simulation step = 1s, simulation stopped when the time of the last data point was 6.5s,
which exceeded requested end time = 6s. At that moment, reported simulation time = 6.5s:

interval = 3
E/E/ : simulation_time = 6.5
|
I
t | t t t t
2 l‘li 7 8 9 10

When x5 simulate function with the same 3s interval is called again, simulation continues with the
same simulation step = 1s, and stops at end time = 9s, with reported simulation time = 9.5s:

interval =3 simulation time =95

8

-E/E/ .

2 E|3 7 8 9 10

Using NL5 simulate function provides the best simulation performance. It won’t decrease simulation
step at the end of current linear range, so that there is no need to restore the step back as simulation
continues. Thus, the simulation will be performed in a fastest manner, regardless of simulation
interruptions.

19

EY NL5DLL User’s Manual

Simulate interval method is performed by N1.5_simulateInterval function, and it runs simulation
exactly for requested interval. Unlike 1.5 simulate, it will adjust (decrease) simulation step if needed
to stop exactly at the end of the requested interval. When next simulation function is called, simulation
step will be restored, and a new linear range will be started.

Please note that if requested interval is smaller than simulation step, NL5 may not be able to decrease
simulation step exactly as needed, and actual simulated interval might be longer than requested. To
avoid that, it is recommended to use simulation step at least not greater than desired intervals.

Here is an example of two consecutive calls of NL5 simulateInterval function. The first call was
made at t = 2.5s (not shown on the graph), with interval = 3.5s:

NL5 SimulatelInterval (ncir, 3.5);

Simulation was performed with constant simulation step = 1s. Simulation stopped exactly at 6s, as
requested. In order to do that, the last simulation step was decreased from 1s down to 0.5s:

interval = 3.5

; - . ; . .
] Fli 7 8 9 10
simulation_time =6

When N15 simulateInterval IS called again with requested interval = 3.5s, simulation step is
restored back to 1s, and simulation continues:

interval =35 interval = 3.5

t I 1 t 1 1
] Eli 7 8 9 10
simulation_time =6 simulation_time = 9.5

In this call, simulation step was also decreased at the end of the interval from 1s down to 0.5s, in order
to stop exactly at 9.5s.

Due to possible change of simulation step even within the linear range, using of

NL5 SimulateInterval may result in extremely slow simulation (especially if requested interval is
small, and comparable with simulation step). Use this function only if it is really needed for your task.

20

EY NL5DLL User’s Manual

Simulate step method is performed by 1.5 simulatestep function, and it executes just one
simulation step. At the end, simulation time IS incremented by that simulation step, so that
simulation time IS always equal to the time of last calculated data point.

Here is an example of simulation using NL5 simulatestep function:

NL5 SimulateStep (ncir);

2 G 7 8 9
Please note that simulation step can be reduced by simulation algorithm if needed.

NL5 Simulatestep function can be used if DLL performs co-simulation with another simulation tool
when it should continuously provide state of analog circuit with minimal possible time interval.

One more function related to simulation is N5 savetc. Calling this function is similar to executing
command Transient/Save IC in the NL5 Circuit Simulator. Current Initial Conditions are saved into
components in the DLL memory. Use NL5_save Of NL5_SaveAs t0 Save components with new Initial
Conditions into the schematic file.

21

EY NL5DLL User’s Manual

Simulation data

NL5 DLL saves all simulated data points into DLL memory. To obtain data of a specific trace, first
obtain trace handle by calling N1.5 GetTrace function:

int ntrace = NL5 GetTrace(ncir, "V(R1)");
if (ntrace < 0))
{
printf ("$s", NL5 GetError()):;
}

There are three ways to retrieve the data of the trace:

1. Read interpolated data;
2. Read data of a specific data point;
3. Read last data.

To read interpolated data at specific time, use NL5_Getbata function with the time as a parameter, and
pointer to double for amplitude of the data point:

double data;
NL5 GetData (ncir, ntrace, 1.234, &data);

Please be aware that interpolated data are calculated using linear interpolation, and may not accurately
represent actual signals of the circuit between calculated data points.

To read the data of a specific data point, use N5 GetDataat function with index of the data point.
Provide pointers to doub1e variables for time and amplitude of the data point:

double t, data;
int index = 123;
NL5 GetDataAt (ncir, ntrace, index, &t, &data);

Data point index is zero-based: index of the first data point is 0, index of the last data point is equal to
number of data points minus 1. Use NL5_GetDatasize function to obtain number of data points
available for the trace:

int ndata = NL5 GetDataSize (ncir, ntrace);
if (ntrace < 0))
{
printf ("%s", NL5 GetError()):;
}

Please note that the number of data points can be different for different traces due to data compression.

22

EY NL5DLL User’s Manual

To read last data, use NL5 GetLastData function with pointers to double variables for time and
amplitude of the data point:

double t, data;
NL5 GetLastData(ncir, ntrace, &t, &data);

This function returns the data of last calculated data point.

As mentioned before, n1.5 start function erases all existing simulation data. Then, during simulation,
all data points are being stored into DLL memory. There is a special algorithm in place to reduce the
memory required for the data which are not changing (constant voltage/current supplies, output of
digital components, etc.). However, if simulation is performed with small simulation step, the total
available memory of the DLL can be easily exceeded.

If large amount of simulated data is expected, it is recommended to upload simulated data to your

application or save into the file from time to time and delete that data from DLL memory by calling
NL5 DeleteOldData function:

NL5 DeleteOldData (ncir);

This function does not erase all the data: it always leaves the very last calculated data point, or two data
points, in order to be able to obtain interpolated data in the new interval.

Simulation data can be saved into the file in the NL5 data format:

NL5 SaveData(ncir, "rc_data.nlt");
The data can be loaded into NL5 and shown on the transient graph.

Also, transient data will be saved in the schematic file if Save with transient data option of the
schematic is enabled (Schematic/Settings/Save options in NL5).

23

EY NL5 DLL User’s Manual

In the following example, simulation stopped after simulating two 3 second intervals using
NL5 simulate function, and final simulation time = 6.5s!:

interval = 3
/ : simulation_time = 6.5
I
|
| t
5 Elﬁ 7 8 9 10

When nNL5_Deleteoldpata function is called, it will erase old data, except last two points:

interval = 3

el

After the next call of N1.5_simulate, the stored data would be:
interval =3

el

Now, all the data of the new calculated interval between t = 6s and t = 9s can be retrieved using
interpolation.

24

EY NL5DLL User’s Manual

Data post-processing

A special trace of Data type can be used for post-processing. Use NL5 addbataTrace function to create
the trace:

int ndata = NL5 AddDataTrace(ncir, "trace name");

To add data to the trace, use N1.5 aAddpata function. In this example, a new calculated trace is equal to
squared v (r1) trace:

int nsource = NL5 GetTrace(ncir, "V(R1)");
int size = NL5 GetDataSize(ncir, nsource);

for(int i=0; i<size; ++1i)

{
double t, v;
NL5 GetDataAt (ncir, nsource, i, &t, &v);
NL5 AddData (ncir, ndata, t, v*v);

To delete current trace data (for example, before new simulation run) use NL5 DeleteData function:

NL5 DeleteData (ncir, ntrace);
The trace can be saved either to NL5 transient data file by n1.5 savepata function, or in the schematic

file, if Save with transient data option of the schematic is enabled (Schematic/Settings/Save options in
the NLS5).

25

EY NL5DLL User’s Manual

AC simulation

NL5 DLL performs AC simulation with simulation parameters specified in the schematic file, or
defined by n1.5_setac function:

NL5 SetAC(ncir, from, to, points, log scale);

To set or change AC source, call NL5 _setacsource function with AC source component name as a
parameter:

NL5 SetACSource(ncir, “V17);

Only “Linearize schematic” methos is currently supported. Call NL5 calcac function to run
simulation:

NL5 CalcAC(ncir);

To obtain calculated AC data, first obtain trace handle:

int ntrace = NL5 GetACTrace(ncir, "V(C1l)");
if (ntrace < 0))
{
printf ("%s", NL5 GetError()):;
}

Please note that AC traces cannot be added through NL5 DLL functions: they should be specified in
the schematic file.

To read a specific data point, use NL5 Getacpataat function with index of the data point. Provide
pointers to doub1e Variables for frequency, magnitude, and phase of the data point:

double f, mag, phase;
int index = 123;
NL5 GetACDataAt (ncir, ntrace, index, &f, &mag, &phase);

Data point index is zero-based: index of the first data point is 0, index of the last data point is equal to
number of data points minus 1. Use NL5_GetAcDatasSize function to obtain number of data points
available for the trace:

int ndata = NL5 GetACDataSize(ncir, ntrace);
if (ntrace < 0))

{
printf ("%s", NL5 GetError()):;

}

Typically, all traces should have the same number of data points, however this may change in the future
DLL versions.

AC data can be saved into the file in the NL5 data format:

NL5 SaveACData (ncir, "rc data.nlf");

26

EY NL5 DLL User’s Manual

The data can be loaded into NL5 and shown on the AC graph.

Also, AC data will be saved in the schematic file if Save with AC data option of the schematic is
enabled (Schematic/Settings/Save options in NL5).

27

EY NL5 DLL User’s Manual

Using DLL with MATLAB

When using NL5 DLL with MATLAB, please use header file n15 d11.n located in the MATLAB
folder of NL5 DLL download package. Due to the way MATLAB is handling Windows DLLs, all
extern “c” declarations must be removed from the header file.

Simple examples of the MATLAB code d11_example.m can be found in the vaTtzaB folder of NL5 DLL
download package. The first one, d11 example.m, opens schematic file d11 example.n15, changes
value of R1 in specified range, runs transient for each R1 value, reads transient data of trace v (out), and
displays results as a 3-D surface.

Here is schematic and results of transient simulation in NL5:

R1 L1 out

1 (AC)
Step

-0

e

Here is a 3-D surface obtained in similar MATLAB simulation performed with NL5 DLL.:

4 Figure 1 = O X

File Edit View |nsert Jools Desktop Window Help >

Ddde @ 06 R(E

28

EY NL5 DLL User’s Manual

Here is MATLAB code:

clear;

clc;

close all;

R=logspace (-1,1,50);

% load library

loadlibrary('nl5 dll.d11', 'nl5 dll.h'");

% open schematic
is = calllib('nl5 dl1', 'NL5 Open', 'dll example.nl5'");
calllib('nl5 dl1', 'NL5 GetError');

% get trace handle
it = calllib('nl5 dll1', 'NL5 GetTrace', 1is, 'V(out)');

% create pointers to data
pd = libpointer ('doublePtr', 0.0);

for k=1:50
% set R1 wvalue
calllib('nl5 dll1', 'NL5 SetValue', is, 'R1', R(k));

% simulate for 10 s
calllib('nl5 dll1', 'NL5 Start', is);
calllib('nl5 dl1', 'NL5 Simulate', is, 10.0);
% read data
for i=1:100
t = 1*0.1;
calllib('nl5 dl1', 'NL5 GetData', is, it, t, pd);
Z (k,1)=pd.value;
end

end

% close document
calllib('nl5 dll', 'NL5 Close', is);
calllib('nl5 dll1', 'NL5 GetError');

% unload library
unloadlibrary 'nl5 dll';

[X,Y] = meshgrid(1:100,1:50);
surf(X,Y,2);
shading flat;
colormap jet;

colorbar;
ylim ([0 501);

Please note that you may need to change path of DLL and header file in function 10adlibrary:

loadlibrary ('Your Path\\nl5 dl11.dl11l', 'Your Path\\nl5 dll.h");
and path of the schematic file in the function ca111ib which calls DLL function N15 Open:

is = calllib('nl5 dl1', 'NL5 Open', 'Your Path\\dll example.nl5');

29

EY NL5DLL

User’s Manual

Another example code d11_ac example.m performs AC analysis of the same circuit. It changes value
of R1 in specified range, reads AC data of trace v (out), and displays magnitude (in dB) as a 3-D

surface.

Here is schematic, and results of AC simulation in NL5:

R1 L1 out

1 (AC)

!

10e-3

Here is a 3-D surface obtained in similar MATLAB simulation performed with NL5 DLL.:

(4 Figure 1
Eile Edit View |nset JTools Desktep Window Help

Ddde @08 &E

40
20
|~
20 +
-40

60

100 0

1-20

1-30

30

EY NL5DLL

User’s Manual

Here is the code:

clear;

clc;

close all;
R=logspace(-2,1,50);

% load library
loadlibrary('nl5_d11l.d11', 'nl5_dll.h');

% open schematic
is = calllib('nl5_d11', 'NL5 Open', 'dll _example.nl5");
calllib('nl5_d11', 'NL5_GetError');

% get trace handle
it = calllib('nl5_d11', 'NL5_GetACTrace', is, 'V(out)');

% create pointers to data

freq = libpointer('doublePtr', 0.0);
mag = libpointer('doublePtr', 0.0);
phase = libpointer('doublePtr', 0.0);

for k=1:50

% set R1 value
calllib('nl5 d11', 'NL5_ SetValue', is, 'R1', R(k));

% simulate for 10 s
calllib('nl5_d11', 'NL5_CalcAC', is);

% read data
for i=1:100

calllib('nl5_d11', 'NL5_GetACDataAt', is, it, i, freq, mag, phase);

Z(k,1)=20.0*1loglo(mag.value);
end

end

% close document
calllib('nl5_d11', 'NL5_Close', is);
calllib('nl5_d11', 'NL5_GetError');

% unload library
unloadlibrary 'nl5_dll';

[X,Y] = meshgrid(1:100,1:50);
surf(X,Y,2);

shading flat;

colormap jet;

colorbar;

ylim([@ 5@]);

view(45,15)

31

EY NL5DLL User’s Manual

Using DLL with Python

When using NL5 DLL with Python, please use the Python package n15py located in the python folder
of NL5 DLL download package. This package makes use of ctypes, which is a foreign function library
for Python. The ctypes library provides C compatible data types, and it allows calling functions in
dynamic linked libraries or shared libraries, such as provided with NL5 DLL.

Setup. The n15py package includes a required initialization file, init .py. Priorto using ni5spy,
you will need to editthe init .py file to include the path to the appropriate library file for your
system.

Windows library file is n15 d11.d11. Edit the path variable as appropriate to point to the library:

path = Path(r'C:\path\to\your\library\nl5 dl11l.d11l")

Note that for Windows, the lower case ‘r’ is necessary to ensure that the backslash (‘\”) is correctly
interpreted. It is optional in the case of Linux or macOS.

Linux library file is n15 d11.so. Edit the path variable as appropriate to point to the library:

path = Path(r'/path/to/your/library/nl5 dll.so')
macOS library file isn15 d11.dy1ib. Edit the path variable as appropriate to point to the library:
path = Path(r'/path/to/your/library/nl5 dll.dylib")

Note that there are two different library files: for Intel processor (x64), and Silver processor (arm64).

The n15py package may be placed in any location in the file system pointed to by the environment
variable pyTHONPATH. PYTHONPATH iS used by Python to specify directories from which modules can be
imported. Please consult online resources if you are unsure of how to set PYTHONPATH.

The example Python scripts assume that the schematic file d11 example.n15 is located in the working
directory. If you place it somewhere else in the file system, be sure to specify the path correctly when
yOUCa”NL5_Opem

Finally, the demo makes use of Python packages numpy and matplot1ib. Please make sure that your
Python distribution has these packages installed.

32

EY NL5DLL User’s Manual

Demo. Simple examples of the Python code d11 example.py can be found in the python folder of NL5
DLL download package. The first one, d11_example.py, Opens schematic file d11 example.nl5,
changes value of R1 in specified range, runs transient for each R1 value, reads transient data of trace

Vv (out), and displays results as a 3-D surface.

Here is schematic and results of transient simulation in NL5:

1 (AC)

l
!

Here is a 3-D surface obtained in similar Python simulation performed with NL5 DLL.:

17.5

15.0

=125

-10.0

- 7.5

5.0

25

33

EY NL5DLL User’s Manual

Here is the code:

import required modules

import nlbpy as nlb

import ctypes as ct

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

open schematic
ncir = nl5.NL5 Open(b'dll example.nl5')

create trace handle
ntrace = nl5.NL5_GetTrace(ncir, b'V(out) ")

create pointer to data
pd = ct.c double()

initialize
R = np.logspace(-1, 1, 50)
Z = np.zeros((50, 100))

for k in range (50):
set R1 value
nl5.NL5 SetValue(ncir, b'R1.R', R[k])

simulate for 10s
nl5.NL5 Start (ncir)
nl5.NL5 Simulate(ncir, 10)

read data

for i in range (100):
t=1*0.1
nl5.NL5 GetData(ncir, ntrace, t, pd)
Zlk, i] = pd.value

close document
nl5.NL5 Close (ncir)
print (nl5.NL5 GetError())

plot a 3D Surface

X = np.linspace(l, 100, 100)
Y = np.linspace(l, 50, 50)
Y, X = np.meshgrid(X, Y)

formatting the figure

fig = plt.figure(figsize=(5, 5))

ax = fig.add subplot (111, projection='3d")
ax.set zlim(0, 20)

mycmap = plt.get cmap('jet')

plt.gca() .invert xaxis()

plotting the surface
surf = ax.plot surface(X, Y, Z, cmap=mycmap)

adding the colorbar
cb = plt.colorbar (surf)

plt.show()

34

EY NL5DLL User’s Manual

Another example code d11_ac example.py performs AC analysis of the same circuit. It changes the
value of R1 in specified range, reads AC data of trace v (out), and displays magnitude (in dB) as a 3-D
surface.

Here is schematic, and results of AC simulation in NL5:

R1 L1 out

1 (AC)

!

Here is a 3-D surface obtained in similar Python simulation performed with NL5 DLL.:

20

35

EY NL5DLL User’s Manual

Here is the code:

import required modules

import nlbpy as nlb

import ctypes as ct

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

open schematic
ncir = nl5.NL5 Open(b'dll example.nl5')

create trace handle
ntrace = nl5.NL5_GetACTrace(ncir, b'V(out) ")
ndata = nl5.NL5 GetACDataSize (ncir, ntrace)

create pointer to data
freq = ct.c_double()

mag = ct.c double ()
phase = ct.c double ()

initialize
R = np.logspace (-2, 1, 50)
Z = np.zeros ((50, 100))

for k in range (50) :
set R1 value
nl5.NL5 SetValue(ncir, b'R1.R', R[k])

simulate AC
nl5.NL5 CalcAC(ncir)

read data

for t in range (100) :
nl5.NL5 GetACDataAt (ncir, ntrace, t, freq, mag, phase)
Z[k, t] = 20.0*np.logl0 (mag.value)

close document
nl5.NL5 Close (ncir)
print (nl5.NL5 GetError())

plot a 3D Surface

X = np.linspace(l, 100, 100)
Y = np.linspace(l, 50, 50)
Y, X = np.meshgrid(X, Y)

formatting the figure

fig = plt.figure(figsize=(5, 5))

ax = fig.add subplot (111, projection='3d'")
ax.set zlim(-60, 20)

mycmap = plt.get cmap('Jjet')

plt.gca() .invert xaxis()

plotting the surface
surf = ax.plot surface(X, Y, Z, cmap=mycmap)

adding the colorbar
cb = plt.colorbar (surf)

ax.view init (45, 15)

plt.show ()

36

EY NL5DLL User’s Manual

Using DLL with SystemVerilog

NL5 DLL can be used for co-simulation with SystemVerilog digital simulators, where DLL functions
are being called through DPI — Direct Programming Interface.

Files
The following files can be used for interfacing DLL with SystemVerilog DPI:

- nl5 di1.d11 (Windows)

- nl5 dil.1ib (Windows)

- nl5 dll.so (Linux)
n15 sv.svh - header file for SystemVerilog code
nl5 sv.c - “wrapper” C-code
svdpi.h - header file for “wrapper” C-code

Using DLL

To use DLL with SystemVerilog code, link the project with appropriate DLL library file, and place
appropriate NL5 DLL file into the directory where it can be accessed. Also, include n15 sv.svh header
file into Verilog code. This file contains prototypes of DLL functions.

Refer to the documentation of your SystemVerilog simulation tool for details on creating the project and
using DPI.

37

EY NL5DLL User’s Manual

Using DLL with C-code “wrapper”

If DLL library file cannot be linked to the SystemVerilog project for any reason, NL5 DLL can be

accessed using provided “wrapper” C-code n15 sv.c. Compile and link that code to the SystemVerilog
project. Please note that different tools may require their own specific header file svdpi .h. Refer to the
documentation of your SystemVerilog simulation tool for details on creating the project and using DPI.

Include n15_sv.svh header file into SystemVerilog code: this file contains prototypes of DLL
functions.

Place DLL file into the directory where it can be accessed. Before calling any DLL functions first time,
DLL should be loaded into memory by calling N5 openpr1 function with appropriate dll file name as a
parameter. The function returns O if successful, or negative error code if failed. The following error
codes are currently used:

int result = NL5 OpenDLL("nl5 dl1.dl11");
if (result == -1)
{
// DLL not found. Handle the error here

}
else if(result == -2)
{

// Some DLL functions not found. Handle the error here

}
else if(result == -3)

{
// DLL already loaded. Handle the error here

}
else
{
// OK
}

Once DLL is successfully loaded, all DLL functions can be called.

38

EY NL5DLL User’s Manual

Running co-simulation demo with Xilinx Vivado

Creating demo project

There are many ways of creating and configuring Vivado project. Please refer to Vivado Manual, or use
public on-line tutorials on Vivado for more information.

For this instructions, Vivado HLx Edition, v2017.4 (64-bit) was used.

To create a new project, open Vivado:

¥ Vivado 20174 - o X

File Flow Tools Window Help = @ QuickAccess

VIVADO? £ XILINX

HLx Editions

Quick Start

Learning Center

rials

Tdl Console

39

EY NL5DLL

User’s Manual

Select “Quick Start” / “Create Project”, Click “Next”

4 MNew Project

Project Name

Enter a name for your project and specify a directory where the project data files will be stored.

Projectname: |nl5_demo

Project|ocation: CuProjectsivivado

/| Create project subdirectory

Project will be created at: C:/Projectshivadoinls_demo

Project name: enter project name (“nl5_demo”), click “Next”:

O

4 New Project

Project Type
Specify the type of project to create

RTL Project
YYou will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

/| Do nat specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation

10 Planning Project
Do not specify design sources. You will be able to view partpackage resources.

Imported Project
Create a Vivado project from a Synplify, XST of ISE Project File

Example Project
Create a new Vivado project from a predefined template.

40

EY NL5DLL

User’s Manual

Project type: click “Next”:

4 New Project
Default Part
Ghoose a default Xilinx part or board for your project. This can be changed Iater.
select | {8 Parts | [l Boards
© Fiter
Product category. | All ~ | Speedorade: Al
Eamily Al v | Temporade | Al
Package Al v
Reset Al Fiters
Searcn: | O v
0PN Available LUT Block
Fart Count 10Bs Elements PTOPS Rayg
@xeTiome7s2L 676 300 41000 s2000 135
@xcTT0MmETe- 676 300 41000 82000 135
@xcTiotpo4B42L 484 285 41000 82000 135
@ xcTKT0HDEETEAL 676 300 41000 82000 135
@xcTionDuBs2L 484 285 41000 s2000 135
©xcTkIOMReTe2L 676 300 41000 82000 135
@xcTk1B0modsa-3 484 285 101400 202800 325
<
©)
@)

Ultra
RAMs

Gb
Transceivers

8
8
4
8
4
8
4

GTPE2
Transceive

0
0
0
[
0
o
0

Default part: please note that list of parts will depend on your installation. Select Xilinx part or board,

click “Next”:

4 New Project

VlVADO' New Project Summary

HLx Editions

Default Part xc7k70tfbv676-1
Product Kintex-7
Family: Kintex-7
Package: fv676
Speed Grade: -1

v
i‘ XILI NX To create the project, click Finish
ALL

RAM

@ Anew RTL projectnamed ni5_demo’ will be created.

@ The default part and product family for the new project

41

EY NL5DLL

User’s Manual

Click “Finish”

nl3_demo - [C:/Prejects/vivado/nl3_demo/nl3_demo.xpr] - Vivade 20174 - a X
File Edit Flow Tools Window Layout View Help | © QuickAccess Ready
= | I - I 25 Default Layout v

4 4

Flow Navigator PROJECT MANAGER - nI5_demo ? X

v PROJECT MANAGER A -

Sources ? 00X Project Summary 200X
£+ Settings =
a T & + o ;

Add Sources Settings Edit
Design Sources
Language Templates 5 Constraints Project name nis_demo
“F IP Catalog ~ Simulation Sources Project location: CuiProjectsivivado/nl5_
sim_1 Product family. Kintex-7
v IPINTEGRATOR | Project part: XCTK7OtfbvE76-1
Hierarchy Libraries Compile Order
Create Block Design Top module name. Mot defined
. Target language Verilog
Open Block Design Properties 2 _0OC X
Simulator language Mixed
Generate Block Design
-3
v SIMULATION Synthesis
Run Simulation Select an object to see properties Status: Not started
Messages: Mo errors or warninas i
v RTLANALYSIS < z
> Open Elaboraled Design TclConsole | Messages | Log | Reports | Design Runs X ?_00
= a

v SYNTHESIS a = 2 %

P Run Synthesis Name Constraints Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LL

~ > synth_1 constrs_1 Mot started
en Synthesized Desic N
> Open Synthest Design & impl_1 constrs_1 Mot started
~ IMPLEMENTATION

P RunImplementation

> Open Implemented Design
oL >

The project has been created; project directory is:

C:\Projects\vivado\nl5 demo

42

EY NL5 DLL User’s Manual

Creating library file

To create library file dpi . a, copy the following files from systemverilog directory of the NL5 DLL

installation package to Vivado temporary directory
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

nl5 sv.c
svdpi.h

In the Vivado Tcl Console command line, type:

xsc nl5 sv.c

For running NL5 DLL demo, copy new dpi . a file from
C:\Users\<UserName>\AppData\Roaming\Xilinx\Vivado

to c:\Projects\vivado\nl5 demo\nl5 demo.sim\sim 1l\behav\xsim
as described in the next section.

43

EY NL5DLL User’s Manual

Configuring and running demo

In the NL5 DLL installation package, go to systemverilog\vivado\src directory, and copy the
following files into project directory c:\Projects\vivado\nl5 demo

nl5 demo.sv
nl5 sv.svh

Select “Project manager” / “Add Sources”:

/ Add Sources X
V|\4A\DO' Add Sources
HLx Editions This guides you through the process of adding and creating sources for your project

Add or create constraints
® Add or create design sources

Add or create simulation sources

& XILINX

=

Add Sources: select “Add or create design source”, click “Next”:

4 Add Sources ®

Add or Create Design Sources

Specify HOL, netlist, Block Design, and IP files, or directeries containing those file types to add to your project. Create a new source
file on disk and add it to your praject

+

Use Add Files, Add Directories or Create File buttons below

Add Files | ‘ Add Directories ‘ | Create File

(?) Next
\z) = Back Mext = Cancel

44

EY NL5DLL

User’s Manual

Add or Create Design Sources: click Add Files, select c:\Projects\vivado\nl5 demo
directory, select n15 demo.sv and n15 sv.svh files (using Ctrl key), click “OK”:

Click “Finish”:

4 AddSources X

Add or Create Design Sources

Specify HOL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create a new source
file on disk and add it to your project

+,

Index MName Library Location
@ 1 nl5_demo.sv xil_defaultio CiProjectsiivado/nl5_demao
@ 2 ni5_sv.svh MNIA C:Projectsiivade/nls_demo

Add Files | | Add Directories | | Create File

Scan and add RTL include files into project

<+ Copy sources into project

lext =
4 nis_demo - [C:/Projects/vivado/nl5_demo/ni5_demouxpr] - Vivado 2017.4 - o x
File Edit Flow Tools Window Layout View Help Q- Quick Access Ready
= > W & = £5 Default Layout v
. P
Flow Navigator PROJECT MANAGER - nl5_demo ?
~ PROJECT MANAGER A
Sources ? 00X Project Summary x nls den 4 » = 7 OO
£+ Settings
Q = & + &
Add Sources Settings Edit
. Templat ~ = Design Sources (2) A
anguage Templates
guag: P 5 % Verllog Header (1) Project name: ni5_demo
1F IP Catalog @2 ni5_demo (nl5_demo sy Project location CiProjectshivadoinis_der
> Constraints Product family Kintex-7
~ IPINTEGRATOR v SimuationSources)~ | Projectpart XCTKTOUDYE76-1
Create Block Design Hierarchy | Libraries Compile Order Top module name nis_demo
Open Block Design . Targetlanguage: Verilog
Source File Properties ?_0@BX Simulator language Mixed
Generate Block Design
@ nl5_demo.sv -3
- ~ | syntnesis
SIMULATION 7 Enabled Y
Run Simulation
Location CoiProjectshivado/nl5_demoini5_demo.sresisol~ Status: Not started
___ > | Messages: No errors or warnings
v RTLANALYSIS General Properties q 5
> Open Elaborated Design
TelConsole | Messages | Log | Reports | DesignRuns ?_00
v SYNTHESIS Qlz & + %
P Run Synthesis Name Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LUT
> Open Synthesized Design v [>synth_1 consts_1 Notstarted
imp_1 constrs_1 Notstarted
~ IMPLEMENTATION
» RunImplementation
> Openimplemented Design
v PROGRAM AND DEBUG - <

45

EY NL5DLL

User’s Manual

Select “Project manager” / “Settings”:

4 Settings

Q.

Project Settings
General
simulation
Elaboration
Synthesis
Implementation
Bitstream

> IP

Tool Settings
Project
1P Defaults
Source File
Display
WebTalk
Help
> TextEditor
3rd Party Simulators
> Colors
Selection Rules
Shorteuts
> Strategies
> Window Behavior

General
Spectty values for various setings usedthroughout the design flow. These settings applytothe g
current project

Name: nl5_demo
Project device: {8 xeTKTOMDVE76-1 (active) D
Targetlanguage: | Verilog v
Defautt liorary: xil_defaultiin
Top module name: ni5_demo E
Language Options

Verilog options: verilog_version=Verilog 2001

Generics/Parameters:

G

Loop count 1,000

Select “Project Settings” / “Simulation”, “Elaboration” tab, enter:
xsim.elaborate.xelab.more_options = -sv_lib dpi

4 Settings

Q

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

> P

Tool Settings
Project
IP Defaults
Source File
Display
WebTalk
Help
> TextEditor
3rd Party Simulators
> Colors
Selection Rules
Shorteuts

Strategies
» Window Behavior

Simulation
Specify various settings asseciated to Simulation ‘

Target simulator: Vivado Simulator d
Simulator language: Wixed ~
Simulation set & sim_1 -~
Simulation top module name: nis_demo E

Compilation | Elaboration Simulation | Neflist | Advanced

xsim.elaborate. snapshot

¥sim.elaborate.debug_level typical ~
xsim.elaborate.relax 7
xsim_elaborate mt_level auto 4
xsim.elaborate.load_olbl 7

¥sim.elaborate rangecheck
xsim.elaborate.sdf_delay sdfmax ~

xsim.elaborate.xelab.more_optiens -sv_lib dpi

xsim.elaborate.xelab.more_options
More XELAB elaboration options

‘ Cancel ‘ ‘ Apply ‘ |Beslore..

46

EY NL5DLL User’s Manual

Select “Simulation” tab, enter:
xsim.simulation.runtime = 1000ns

§ Setting X
Simulation

Project Settings Specify various seftings associated to Simulation y
LT - e
Simulation Target simulator: Vivado Simulator v
Elaboration
Smthesis Simulator language Wixed -
Implementation Simulation st i sim_1 -
Bitstream

s P Simulation top module name: | nl5_demo E‘

Tool Settings
Project Compilation | Elaboration | Simulation Netist | Advanced
IP Defaults
source File ysim simulate tcl post
Display xsim.simulate.runtime 1000ns
WebTalk xsim simulate log_all_signals
Helo xsim simulate custom_te

3 TextEdior xeim.simulate wdb
3rd Party Simulators xsim simulats saif_scope

> Golors xsim simulate saif
Selection Rules ysim simulate sail_all_signals

Shortcuts *sim.simulate.xsim.more_opfions
> Stategies
> Window Behavior

xsim simulate.runtime
Specify simulation run time

(2)
(2) oK ‘ Cancel ‘ ‘ Apply | ‘Besmre

Click “OK”

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation”. An error
message will pop up:

Run Simulation e

e ERROR: [Common 17-39] launch_simulation’ failed due to earlier errors.

Click “OK” two times. This step is required in order to force Vivado to create simulation directory, and
then copy required nl5 demo files into that directory.

In the NL5 DLL installation package, go to systemverilog\vivado\sim directory, and copy the
following files into simulation directory
C:\Projects\vivado\nl5 demo\nl5 demo.sim\sim l\behave\xsim

nl5 dll.dll
rc.nlb

Also, copy library file dpi.a, as described in ”Creating library file” section.

47

EY NL5DLL

User’'s Manual

Select “Project Manager” / “Simulation” / “Run Simulation” / Run Behavioral Simulation™.

After successful simulation, the results will be

shown in the Waveform Window:

4 nis_demo - [C:/Projects/vivado/ni5_demo/ni5_demoupr] - Vivade 20174 - o X
File Edt Flow Tools Window Layout View Run Help Ready
= 5 & X < » & 10] us vz (] £3 Defautt Layout v

Flow Navigator S8 SIMULATION - Behavioral Simulation - Functional - sim_1 - nl5_demo

~ PROJECT MANAGER N

sco bj Untitied 2
£ Settings N
Q = = ® Q # |1 W a a o« [« T
Add Sources
Name Name Valu ™
L Templat
angusge Templates @ ni5_demo > R ref(31:0] 0
- ° Name = Value
*F IP Catalog @ giol > % nir31:0] 0
> Znouratal o
~ IPINTEGRATOR > ®nin_ciE1o] o
Create Block Design > %nin_RI310] 1
x 290
% out 0
a1 1
bv2 0
~ SIMULATION v P
Run Simulation
¥ RTLANALYSIS
> Open Elaborated Design
< > < P
~ SYNTHESIS
Run Synthesis Tel Console
> Open Synthesized De Q = 2 Il 8B E @
$finish called at time : 991 ns : File "C:/Projects/vivado/nlS5_demo/nl5_demo.srcs/scurces_l/imports/Demo files/nl5_d*
~ IMPLEMENTATION INFO: [USF-XSim-9€] XSim completed. Design snapshot 'nlS_demo behav' loaded -
INFO: [USF-¥5im-57] XSim simulation ran 1000ns -
Run Implementation launch_simulation: Time (s): cpu = 00 ; elapsed = 00:00:08 . Memory (MB): peak = 813.086 ; gain = 0.000 =
> OpenImplemented Design < B
Sim Time: 991 ns

To see analog waveforms of the simulation, start NL5 Circuit Simulator, open nl5 file with simulation

results

C:\Projects\vivado\nl5 demo\nl5 demo.sim\sim l\behav\xsim\result.nl5

and open transient window:

AL NLS - [result - Transient]

Fl\e Edit Schematic Transient AC Tools Window Help

EECEIEIEY D EEY

IEREIEEEE

[EEEIE

R =R O e e e e SR S O e SR

AljALC D

result

Li0 4R TAM AW LKLY

31MB | Ciil

T
—

& 3|é{>]>;ﬂ

FHBw BRI tEas

=l

B ST SF & o7 o [

Shift | Click to move cursor

48

EY NL5 DLL User’'s Manual

Demo circuit

A simple oscillator circuit with 3 inverters is used as a demo:

Digital part (Y1, Y2, Y3) of the circuit is disabled, since it will be simulated by SystemVerilog. Labels
“out”, “in_C”, and “in_R” are used for passing signals between analog and digital parts.

When SystemVerilog simulation is completed, the schematic is saved into the file resu1t.n15 along
with transient results. Start NL5 Circuit Simulator, and open result.n15 to see analog waveforms in
details.

To run simulation with NL5 Circuit Simulator, enable digital part of the schematic, and run transient. To

enable/disable schematic, select part of the schematic, right-click on the selection, select “Enable” or
“Disable” from context menu.

49

EY NL5DLL User’s Manual

I11. DLL Functions

50

EY NL5 DLL User’s Manual

NL5_Ge tError

Prototype:
char* NL5 GetError ()
Parameters:
No parameters
Returns:
Pointer to null-terminated ASCII character string
Description:
Returns text description of last execution error. If no error, returns "OK”.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

51

EY NL5 DLL User’s Manual

NL5_GetInfo

Prototype:

char* NL5 GetInfo ()
Parameters:

No parameters
Returns:

Pointer to null-terminated ASCII character string
Description

Returns information about DLL, such as version and date.

The content of the string is valid only until execution of the next DLL function. If the text is needed for the
future use, it is user’s responsibility to copy it to safe location.

52

EY NL5 DLL User’s Manual

NL5 GetLicense
Prototype:
int NL5 GetLicense (char* name)
Parameters:
char* name - pointer to null-terminated ASCII character string with NL5 license file name
Returns:

0 : valid license file with DLL license option found
<0 : error, or license does not have DLL option

Description

The function loads NL5 license file and checks if DLL license option is enabled. Call
NL5 GetError ()after calling NL5 GetLicense ()to get License ID, or error message.

53

EY NL5 DLL User’s Manual

NL5 Open

Prototype:

int NL5 Open (char* name)
Parameters:

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name
Returns:

>=0 : circuit handle
-1 error

Description
Opens NL5 schematic file “name”.

Returns non-negative circuit handle, or -1 if file not found, cannot be open for any reason, or file and is
not DLL-enabled and contains too many components.

Circuit handle can be used as input parameter ncir for other DLL functions.

If file name does not have path specified, DLL will search for the file in the same directory where NL5
DLL is located.

54

EY NL5DLL User’s Manual

NL5_Close

Prototype:

int NL5 Close(int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description

Close schematic with handle ncir. Schematic information will be removed from DLL, handle ncir
cannot be used anymore.

55

EY NL5 DLL

User’s Manual

NL5_S ave

Prototype:
int NL5 Save (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description

Save schematic with handle ncir into the same file.

Use this function to save schematic back to NL5 schematic file. You might want to save the schematic if
any modification of component parameters were made, IC (Initial Conditions) were saved, or if you want

to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the
schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save

with transient data” checkbox, and save schematic into the file.

56

EY NL5DLL User’s Manual

NL5_S avelAs

Prototype:

int NL5 SaveAs (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 schematic file name
Returns:

0 :OK

-1 : error
Description

Save schematic with handle ncir into a new schematic file.

Use this function to save schematic into a new NL5 schematic file. You might want to save the
schematic if any modification of component parameters were made, IC (Initial Conditions) were saved,
or if you want to save schematic with transient data (simulation data traces).

To save schematic with transient data, make sure the “Save with transient data” option is set in the

schematic file. To set the option, open schematic file in NL5, go to File/Properties/Save, select “Save
with transient data” checkbox, and save schematic into the file.

57

EY NL5DLL User’s Manual

NL5_Ge tValue

Prototype:

int NL5 GetValue (int ncir, char* name, double* v)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
double* v - pointer to value variable
Returns:
0 :0OK
-1 : error
Description

Returns double value of component parameter.

name iS component parameter name in the format <component >.<parameter> (“"R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank
- “On/Off” : 1 for “on”, O for “Of£”

- “High/Low” :1for “High”, Ofor “Low”

- “Yes/No” :1for “Yes”, O for “No”

- text list : parameter number in the list (zero based)

Other parameter types are not supported.

58

EY NL5 DLL User’s Manual

NL5_Se tValue

Prototype:

int NL5 SetValue(int ncir, char* name, double V)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
double v - parameter value
Returns:
0 :O0K
-1 : error
Description

Sets value of parameter to v.

name iS component parameter name in the format <component >.<parameter> (“"R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Off” :1for “on”, O for “O£f£”

- “High/Low” :1for “High”, Ofor “Low”

- “Yes/No” ;1 for “Yes”, O for “"No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

59

EY NL5DLL User’s Manual

NL5_Ge tText

Prototype:

int NL5 GetText (int ncir, char* name, char* text, int length)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
char* text - pointer to null-terminated ASCII character string with parameter text
int length — max number of characters allowed to return into text, including trailing null
Returns:

>=0 : number of characters returned into text, including trailing null.
-1 error

Description

Returns text (parameter value in text format) of component parameter or model into character string
text.

name iS component parameter name in the format <component >.<parameter> (“\R1.R”, “V1.V”). For
component model, use <component >.model format (*v1.model”). See NL5 Circuit Simulator Manual
for details (User Interface/Data format/Names).

Size of character string text should be not less than 1ength.

Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

60

EY NL5DLL User’s Manual

NL5_Se tText

Prototype:

int NL5 SetText (int ncir, char* name, char* text)

Parameters:
int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with parameter name
char* text - pointer to null-terminated ASCII character string with parameter text
Returns:
0 : OK
-1 : error
Description

Sets text of component parameter name or model to text.

name IS component parameter name in the format <component >.<parameter> (“*R1.R”, “V1.V”). For
component model, use <component >.model format (*v1.model”). See NL5 Circuit Simulator Manual
for details (User Interface/Data format/Names).

Returns -1 if parameter not found, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=".

61

EY NL5 DLL User’s Manual

NL5_Ge tParam

Prototype:

int NL5 GetParam(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with parameter name
Returns:

>=0 : parameter handle
-1 error

Description

name IS component parameter name in the format <component >.<parameter> (*R1.R”, “V1.V”).
See NL5 Circuit Simulator Manual for details (User Interface/Data format/Names).

Returns non-negative handle of component parameter, or -1 if parameter not found.

62

EY NL5 DLL User’s Manual

NL5_Ge tParamValue

Prototype:

int NL5 GetParamValue (int ncir, int npar, double* v)

Parameters:
int ncir - circuit handle
int npar - parameter handle
double* v - pointer to the variable
Returns:
0 :OK
-1 : error
Description

Returns double value of parameter with handle npar into variable v. Parameter handle npar should
be obtained by function NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, the following value is returned:

- formula : number in double format

- Initial Condition : number in double format if not blank, not supported if blank
- “On/Off” : 1 for “on”, O for “Of£”

- “High/Low” :1for“High”, Ofor “Low”

- “Yes/No” 11 for “Yes”, O for “No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

63

EY NL5 DLL User’s Manual

NL5_Se tParamValue

Prototype:

int NL5 SetParamValue (int ncir, int npar, double V)

Parameters:
int ncir - circuit handle
int npar - parameter handle
double v - parameter value
Returns:
0 :OK
-1 : error
Description

Sets value of parameter with handle npar to v. Parameter handle npar should be obtained by function
NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Depending on parameter type, number v is interpreted as follows:

- formula : number in double format

- Initial Condition : number in double format

- “On/Qff” :1for “on”, O for “O££”

- “High/Low” :1for “High”, O for “Low”

- “Yes/No” ;1 for “Yes”, O for “"No”

- textlist : parameter number in the list (zero based)

Other parameter types are not supported.

64

EY NL5DLL User’s Manual

NL5_Ge tParamText

Prototype:

int NL5 GetParamText (int ncir, int npar, char* text, int length)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text

int length — max number of characters allowed to return into text, including trailing null
Returns:

>=0 : number of characters returned into text, including trailing null.
-1 @ error

Description

Copies text (parameter value in text format) of component parameter with handle npar into character
string text.

Parameter handle npar should be obtained by function NL5 GetParam.
Size of character string text should be not less than 1ength.
Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text returned is the same as displayed in the
components window of NL5 Circuit Simulator.

If parameter is defined as a formula, text of the formula will be returned.

65

EY NL5 DLL User’s Manual

NL5_Se tParamText

Prototype:

int NL5 SetParamText (int ncir, int npar, char* text)

Parameters:

int ncir - circuit handle

int npar - parameter handle

char* text - pointer to null-terminated ASCII character string with parameter text
Returns:

0 : OK

-1 : error
Description

Sets text of component parameter with handle npar to text. Parameter handle npar should be
obtained by function NL5 GetParam.

Returns -1 if parameter handle npar is not valid, or parameter type is not supported.

Practically all parameter types are supported. The text provided is expected to be the same as displayed
in the components window of NL5 Circuit Simulator.

To enter a formula for parameter of “formula” type, provide text of the formula started with equal sign ‘=".

66

EY NL5 DLL User’s Manual

NL5_Ge tTrace

Prototype:

int NL5 GetTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name
Returns:

>=0 : trace handle
-1 . error

Description

name is the trace name in the format used by NL5 Circuit Simulator. See NL5 Circuit Simulator Manual
for details (User Interface/Data format/Names/Trace).

Returns non-negative trace handle, or -1 if trace name not found.

67

EY NL5 DLL User’s Manual

NL5_AddVTrace

Prototype:

int NL5 AddVTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates voltage trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or voltage trace is not supported
by the component.

68

EY NL5 DLL User’s Manual

NL5_AddI Trace

Prototype:

int NL5 AddITrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates current trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or current trace is not supported
by the component.

69

EY NL5 DLL User’s Manual

NL5_AddPTrace

Prototype:

int NL5 AddPTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : trace handle
-1 . error

Description
Creates power trace for component name.

Returns non-negative trace handle, or -1 if component name not found, or power trace is not supported by
the component.

70

EY NL5 DLL User’s Manual

NL5_AddVarTrace

Prototype:

int NL5 AddVarTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with schematic variable name
Returns:

>=0 : trace handle
-1 . error

Description

Creates trace for schematic variable name.

Returns non-negative trace handle, or -1 if variable name not found.

71

EY NL5 DLL User’s Manual

NL5_AddFuncTrace

Prototype:

int NL5 AddFuncTrace (int ncir, char* text)

Parameters:

int ncir - circuit handle

char* text - pointer to null-terminated ASCII character string with function text
Returns:

>=0 : trace handle
-1 : error

Description

Creates trace of function text. See NL5 Circuit Simulator Manual for details on function trace
(Transient Analysis/Transient Data/Traces/Function trace).

Returns non-negative trace handle, or -1 if error occurred.

72

EY NL5 DLL User’s Manual

NL5_AddDataTrace

Prototype:

int NL5 AddDataTrace(int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name
Returns:

>=0 : trace handle
-1 . error

Description
Creates trace of Data type for post-processing data.

Returns non-negative trace handle, or -1 if error occurred.

73

EY NL5DLL User’s Manual

NL5_De1eteTrace

Prototype:
int NL5 DeleteTrace (int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:
0 :OK
-1 : error
Description

Deletes traces with trace handle ntrace.

74

EY NL5 DLL User’s Manual

NL5 GetInput

Prototype:

int NL5 GetInput (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : input handle
-1 error

Description

name iS component name.
The following component types are supported:

- Label
- Voltage source
- Current source

Returns non-negative input handle or -1 if component not found, or is not supported as an input.
The model of the component will be automatically changed to ‘V” (constant voltage source) or “I”
(constant current source).

75

EY NL5 DLL User’s Manual

NL5 SetInputValue

Prototype:

int NL5 SetInputValue (int ncir, int nin, double V)

Parameters:
int ncir - circuit handle
int nin - input handle
double v - parameter value
Returns:
0 :OK
-1 : error
Description

Sets voltage or current of the input with handle npar to v. Input handle nin should be obtained by
function NL5 GetInput.

Returns -1 if input handle nin is not valid.

76

EY NL5 DLL User’s Manual

NL5 SetInputLogicalValue

Prototype:

int NL5 SetInputLogicalValue(int ncir, int nin, int 1)

Parameters:
int ncir - circuit handle
int nin - input handle
int i - parameter value
Returns:
0 :OK
-1 : error
Description

Sets voltage or current of the input with handle npar to:

- low logical level value, if 1 ==
- high logical level value, if 1 !'= 0

Logical levels are set up in the NL5 Transient Settings, Advanced settings, Transient tab.

Returns -1 if input handle nin is not valid.

77

EY NL5 DLL User’s Manual

NL5 GetOutput

Prototype:

int NL5 GetOutput (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with component name
Returns:

>=0 : input handle
-1 error

Description
name is label or component name

Returns non-negative output handle or -1 if component not found, or is not supported as an output.

78

EY NL5 DLL

User’s Manual

NL5 GetOutputValue

Prototype:

int NL5 GetOutputValue (int ncir, int nout, double* v)

Parameters:
int ncir - circuit handle
int nout - output handle
double* v - pointer to the variable
Returns:
0 :OK
-1 : error
Description

Sets double value of voltage of output with handle nout into variable v.

Returns -1 if output handle nout is not valid.

79

EY NL5 DLL User’s Manual

NL5 GetOutputLogicalValue

Prototype:

int NL5 GetOutputValue (int ncir, int nout, int* 1)

Parameters:

int ncir - circuit handle

int nout - output handle

int* i - pointer to the variable
Returns:

0 :OK

-1 : error
Description

Sets int value of logical level of output with handle nout into variable i:

- 0, if output voltage is below logical threshold
- 1, if output voltage is equal or above logical threshold

Logical threshold is set up in the NL5 Transient Settings, Advanced settings, Transient tab.

Returns -1 if output handle nout is not valid.

80

EY NL5 DLL User’s Manual

NL5 SetStep

Prototype:

int NL5 SetStep(int ncir, double step)

Parameters:
int ncir - circuit handle
double step - calculation step
Returns:
0 :OK
-1 error
Description

Sets maximum calculation step size. If this function was not called, an original calculation step from
schematic file will be used (Transient/Settings/”Calculation step”).

81

EY NL5 DLL User’s Manual

NL5_Se tTimeout

Prototype:

int NL5 SetTimeout (int ncir, int t)

Parameters:
int ncir - circuit handle
int t - time-out, seconds
Returns:
0 :OK
-1 error
Description

Sets maximum time allowed for calculating one simulation step. If this function was not called, a default
time-out value is used (0). If time-out is equal to zero, time-out detection is disabled.

If time-out occurred due to unresolved switching iterations, the error message will indicate a component
which started switching process. Time-out may also occur due to infinite while/do/for loops of C-code.

82

EY NL5DLL

User’s Manual

NL5_Ge tSimulationTime

Prototype:

int NL5 GetSimulationTime (int ncir, double* t)

Parameters:
int ncir - circuit handle
double* t - pointer to time variable
Returns:
0 :OK
-1 error
Description

Sets t to the current value of internal simulation time variable.

83

EY NL5DLL

User’s Manual

NL5_S tart

Prototype:

int NL5 Start (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description

Start simulation.

The function resets internal simulation time variable to O, initializes circuit components, erases
existing simulation data, and calculates initial state of the circuit according to specified Initial Conditions.

When function returns, the simulation data consists of circuit state at t=0.

The function should be called first to start simulation from t=0, prior to calling any simulation functions.
However, calling NL5 Start is not required. It will be executed automatically if any of simulation

functions is called, and simulation has not been performed yet.

The function may return error code if not-DLL enabled schematic contains too many components after

loading subcircuits.

84

EY NL5 DLL User’s Manual

NL5_S imulate

Prototype:

int NL5 Simulate(int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds
Returns:

0 :OK

-1 error
Description

Performs transient simulation at least for requested interval.

The function does not change simulation step in order to stop exactly at the end of requested
interval, so the time of the last calculated data may exceed requested end time. When next
simulation function is called, simulation will be continued with simulation step equal to the last simulation
step.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

85

EY NL5DLL User’s Manual

NL5_Simulate Interval

Prototype:

int NL5 SimulatelInterval (int ncir, double interval)

Parameters:

int ncir - circuit handle

double interval - time interval to simulate, in seconds
Returns:

0 :OK

-1 : error
Description

Performs transient simulation exactly for requested interval.

The function may adjust (decrease) simulation step in order to stop exactly at the end of requested
interval. When next simulation function is called, simulation step will be restored, and a new linear
range will be started.

Please note that if requested interval is less than simulation step, NL5 may not be able to decrease
simulation step exactly as needed, and actual simulated interval will be longer than requested. To avoid
that, it is recommended to use simulation step at least not greater than desired intervals.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

86

EY NL5 DLL User’s Manual

NL5 SimulateStep

Prototype:

int NL5 SimulateStep (int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description
Performs one step of transient simulation.
When the function returns, simulation time variable is set to the time of last calculated data.

The function may return error code if not-DLL enabled schematic contains too many components after
loading subcircuits.

87

EY NL5DLL

User’s Manual

NL 5_S avelC

Prototype:

int NL5 SaveIC(int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 : error

Description

Saves current component states into components’ Initial Conditions.

The function does not save schematic into schematic file.

88

EY NL5 DLL User’s Manual

NL5_GetDataSize

Prototype:
int NL5 GetDataSize (int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:

>=0 : data size (number of data points)
-1 : error

Description

Returns non-negative number of data points of the trace with trace handle ntrace or -1 if error occurred.

89

EY NL5 DLL User’s Manual

NL5_Ge tDataAt

Prototype:

int NL5 GetDataAt (int ncir, int ntrace, int n, double* t, double* data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
int n - data point index

double* t pointer to time variable
double* data — pointer to value variable

Returns:

0 :OK
-1 error

Description
Returns time and data of data point with index n. Data index is zero-based.

Returns -1 if index is less than zero, or greater or equal to data size.

90

EY NL5 DLL User’s Manual

NL5_Ge tLastData

Prototype:

int NL5 GetlLastData (int ncir, int ntrace, double* t, double* data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle

double* t
double* data

pointer to time variable
pointer to data variable

Returns:

0 : 0K
-1 error

Description
Sets t and data to the time and data value of the last data point.

Returns -1 if there is no data.

91

EY NL5 DLL User’s Manual

NL5_Ge tData

Prototype:

int NL5 GetData(int ncir, int ntrace, double t, double* data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
double t - time

double* data pointer to data variable

Returns:
0 :OK
-1 error
Description

Sets data to the data value at time t. The data is calculated as linear interpolation between two data
points, with time below and above requested time.

Returns -1 if t is less than time of first data point, or greater than the time of last data point.

92

EY NL5DLL User’s Manual

NL5 AddData

Prototype:

int NL5 AddData (int ncir, int ntrace, double t, double data)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
double t - time
double data - data
Returns:
0 :OK
-1 error
Description

Add data value data at time t to specified trace.

93

EY NL5DLL User’s Manual

NL5_DeleteData

Prototype:
int NL5 DeleteData(int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:
0 :OK
-1 error
Description

Delete all data of specified trace.

94

EY NL5 DLL User’s Manual

NL5_SaveData

Prototype:

int NL5 SaveData (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 data file name
Returns:

0 :OK

-1 : error
Description

Save transient data of the schematic with handle ncir into the data file.

Use this function to save transient data into the file in NL5 data format. Default file extension is “nit”.
The data can be loaded into NL5 and shown on the transient graph.

95

EY NL5DLL User’s Manual

NL5_Se tAC

Prototype:

int NL5 SetAC(int ncir, double from, double to, int points, int scale)

Parameters:

int ncir - circuit handle

double from - start frequency

double to - end frequency

int points - number of frequency points

int scale - frequency scale: 0 — logarithmic, 1 - linear
Returns:

0 :O0K

-1 : error
Description

Set AC simulation parameters.

96

EY NL5 DLL User’s Manual

NL5_SetACSource

Prototype:
int NL5 SetAC(int ncir, char* name)
Parameters:

int ncir - circuit handle
char* name - pointer to null-terminated ASCII character string with component name

Returns:
0 :OK
-1 : error
Description

Set component name as a source for AC simulation.

97

EY NL5 DLL

User’s Manual

NL5_CachC

Prototype:

int NL5 CalcAC(int ncir)
Parameters:

int ncir - circuit handle
Returns:

0 :OK
-1 error

Description

Perform AC simulation with simulation parameters specified in the schematic file. Only “Linearize

schematic” method is supported.

98

EY NL5 DLL User’s Manual

NL5_Ge tACTrace

Prototype:

int NL5 GetACTrace (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with trace name
Returns:

>=0 : trace handle
-1 . error

Description

name IS AC trace name in the format used by NL5 Circuit Simulator. See NL5 Circuit Simulator Manual
for details (User Interface/Data format/Names/Trace).

Returns non-negative trace handle, or -1 if trace name not found.

99

EY NL5 DLL User’s Manual

NL5_GetACDataSize

Prototype:
int NL5 GetACDataSize (int ncir, int ntrace)
Parameters:

int ncir - circuit handle
int ntrace - trace handle

Returns:

>=0 : data size (number of AC data points)
-1 : error

Description

Returns non-negative number of AC data points of the trace with trace handle ntrace or -1 if error
occurred.

100

EY NL5 DLL User’s Manual

NL5_Ge tACDataAt

Prototype:

int NL5 GetACDataAt (int ncir, int ntrace, int n, double* f, double* mag,

double* phase)

Parameters:
int ncir - circuit handle
int ntrace - trace handle
int n - data point index
double* £ - pointer to frequency variable
double* mag - pointer to magnitude variable
double* phase - pointerto phase variable
Returns:
0 :OK
-1 : error
Description

Returns frequency (Hz), magnitude, and phase (radians) values of data point with index n. Data index is
zero-based.

Returns -1 if index is less than zero, or greater or equal to data size.

101

EY NL5 DLL User’s Manual

NL5_SaveACData

Prototype:

int NL5 SaveACData (int ncir, char* name)

Parameters:

int ncir - circuit handle

char* name - pointer to null-terminated ASCII character string with NL5 data file name
Returns:

0 :OK

-1 : error
Description

Save AC data of the schematic with handle ncir into the data file.

Use this function to save transient data into the file in NL5 data format. Default file extension is “nif".
The data can be loaded into NL5 and shown on the AC graph.

102

EY NL5DLL User’s Manual

V. Attachments

103

EY NL5DLL User’s Manual

END USER LICENSE AGREEMENT

This End-User License Agreement ("EULA", “Agreement”) is a legal agreement between you ("you",
either an individual or a single entity) and Sidelinesoft, LLC (“Sidelinesoft”) for the NL5 Circuit
Simulator and NL5 DLL software ("the Software”, “the Software Product"), NL5 License (“the
Software License”), and accompanying documentation.

Ownership

The Software, any accompanying documentation, and all intellectual property rights therein are owned
by Sidelinesoft. The Software is licensed, not sold. The Software is protected by copyright laws and
treaties, as well as laws and treaties related to other forms of intellectual property. The Licensee's license
to download, use, copy, or change the Software Product is subject to these rights and to all the terms and
conditions of this Agreement.

Acceptance

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY
DOWNLOADING THE SOFTWARE PRODUCT OR BY INSTALLING, USING, OR COPYING
THE SOFTWARE PRODUCT. YOU MUST AGREE TO ALL OF THE TERMS OF THIS
AGREEMENT BEFORE YOU WILL BE ALLOWED TO DOWNLOAD THE SOFTWARE
PRODUCT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, YOU
MUST NOT INSTALL, USE, OR COPY THE SOFTWARE PRODUCT.

License Grant

Sidelinesoft grants you a right to download, install, and use unlimited copies of the Software Product.
Without a Software License, the Software operates as a Demo version, with limited number of
components in the schematic, and possibly some functional and performance limitations. Several types
of Full-Function Software Licenses can be obtained at Software Product website (nl5.sidelinesoft.com).
Terms and conditions of each type of Full-Function Software License are available at the website and
are subject to change without notice.

Restrictions on Reverse Engineering, Decompilation, and Disassembly.
You may not decompile, reverse-engineer, disassemble, or otherwise attempt to derive the source code
for the Software Product.

Restrictions on Alteration

You may not modify the Software Product or create any derivative work of the Software Product or its
accompanying documentation without obtaining permission of Sidelinesoft. Derivative works include
but are not limited to translations. You may not alter any files or libraries in any portion of the Software
Product.

Consent to Use of Data

Sidelinesoft may ask for your permission to collect and use technical information gathered as part of the
product support services provided to you, if any, related to the Software. Sidelinesoft may use this
information solely to improve the Software or to provide customized services to you and will not
disclose this information in a form that personally identifies you.

Disclaimer of Warranties and Limitation of Liability

UNLESS OTHERWISE EXPLICITLY AGREED TO IN WRITING BY SIDELINESOFT,
SIDELINESOFT MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, IN FACT OR IN
LAW, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF

104

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OTHER THAN AS SET
FORTH IN THIS AGREEMENT.

Sidelinesoft makes no warranty that the Software Product will meet your requirements or operate under
your specific conditions of use. Sidelinesoft makes no warranty that operation of the Software Product
will be secure, error free, or free from interruption. YOU MUST DETERMINE WHETHER THE
SOFTWARE PRODUCT SUFFICIENTLY MEETS YOUR REQUIREMENTS FOR SECURITY AND
UNINTERRUPTABILITY. YOU BEAR SOLE RESPONSIBILITY AND ALL LIABILITY FOR ANY
LOSS INCURRED DUE TO FAILURE OF THE SOFTWARE PRODUCT TO MEET YOUR
REQUIREMENTS. UNDER NO CIRCUMSTANCES SHALL SIDELINESOFT BE LIABLE TO YOU
OR ANY OTHER PARTY FOR INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL,
PUNITIVE, OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOST REVENUES OR
PROFITS OR LOSS OF BUSINESS) RESULTING FROM THIS AGREEMENT, OR FROM THE
PERFORMANCE, INSTALLATION, USE OR INABILITY TO USE THE SOFTWARE PRODUCT,
WHETHER DUE TO A BREACH OF CONTRACT, BREACH OF WARRANTY, OR THE
NEGLIGENCE OF SIDELINESOFT OR ANY OTHER PARTY, EVEN IF SIDELINESOFT IS
ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT
THAT THE APPLICABLE JURISDICTION LIMITS SIDELINESOFT'S ABILITY TO DISCLAIM
ANY IMPLIED WARRANTIES, THIS DISCLAIMER SHALL BE EFFECTIVE TO THE
MAXIMUM EXTENT PERMITTED.

Limitation of Remedies and Damages

Your remedy for a breach of this Agreement or of any warranty included in this Agreement is the
correction or replacement of the Software Product. Selection of whether to correct or replace shall be
solely at the discretion of Sidelinesoft. Any claim must be made within the applicable warranty period.
All warranties cover only defects arising under normal use and do not include malfunctions or failure
resulting from misuse, abuse, neglect, alteration, improper installation, or a virus. All limited warranties
on the Software Product are granted only to you and are non-transferable. You agree to indemnify and
hold Sidelinesoft harmless from all claims, judgments, liabilities, expenses, or costs arising from your
breach of this Agreement and/or acts or omissions.

Severability

If any provision of this Agreement shall be held to be invalid or unenforceable, the remainder of this
Agreement shall remain in full force and effect. To the extent any express or implied restrictions are not
permitted by applicable laws, these express or implied restrictions shall remain in force and effect to the
maximum extent permitted by such applicable laws.

Termination

This Agreement is effective until terminated. Without prejudice to any other rights, Sidelinesoft may
terminate this Agreement if you fail to comply with the terms and conditions of this Agreement. In such
event, you must destroy all copies of the Software License.

Governing Law, Dispute Resolution
This Agreement is governed by the laws of the State of Colorado, U.S.A., without regard to its choice of
law principles to the contrary.

Contact Information.
Any inquiries regarding this Agreement or the Software may be addressed to Sidelinesoft at the
Software Product website (nl5.sidelinesoft.com).

105

http://nl5.sidelinesoft.com/

EY NL5DLL User’s Manual

The end

106

	I. Introduction
	What is NL5 DLL
	Version
	Files
	License

	II. Using DLL
	Functions
	Function parameters
	Function result
	Handles

	Using DLL
	Error message
	DLL information
	License
	Schematic
	Parameters
	Traces
	Co-simulation
	Inputs/Outputs
	Transient simulation
	Simulation data
	Data post-processing
	AC simulation

	Using DLL with MATLAB
	Using DLL with Python
	Using DLL with SystemVerilog
	Files
	Using DLL
	Using DLL with C-code “wrapper”

	Running co-simulation demo with Xilinx Vivado
	Creating demo project
	Creating library file
	Configuring and running demo
	Demo circuit

	III. DLL Functions
	NL5_GetError
	NL5_GetInfo
	NL5_GetLicense
	NL5_Open
	NL5_Close
	NL5_Save
	NL5_SaveAs
	NL5_GetValue
	NL5_SetValue
	NL5_GetText
	NL5_SetText
	NL5_GetParam
	NL5_GetParamValue
	NL5_SetParamValue
	NL5_GetParamText
	NL5_SetParamText
	NL5_GetTrace
	NL5_AddVTrace
	NL5_AddITrace
	NL5_AddPTrace
	NL5_AddVarTrace
	NL5_AddFuncTrace
	NL5_AddDataTrace
	NL5_DeleteTrace
	NL5_GetInput
	NL5_SetInputValue
	NL5_SetInputLogicalValue
	NL5_GetOutput
	NL5_GetOutputValue
	NL5_GetOutputLogicalValue
	NL5_SetStep
	NL5_SetTimeout
	NL5_GetSimulationTime
	NL5_Start
	NL5_Simulate
	NL5_SimulateInterval
	NL5_SimulateStep
	NL5_SaveIC
	NL5_GetDataSize
	NL5_GetDataAt
	NL5_GetLastData
	NL5_GetData
	NL5_AddData
	NL5_DeleteData
	NL5_SaveData
	NL5_SetAC
	NL5_SetACSource
	NL5_CalcAC
	NL5_GetACTrace
	NL5_GetACDataSize
	NL5_GetACDataAt
	NL5_SaveACData

	IV. Attachments
	END USER LICENSE AGREEMENT

